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The n TOF facility at CERN is a source of neutrons produced
by spallation of 20 GeV/c protons onto a lead target. The out-
standing characteristics of this source (very high intensity, 200 m
ight path, wide spectral function) make it an extremely useful tool
for studying neutron induced reactions. The neutrons in the energy
region from 1 to 10 MeV are particularly interesting for producing
nuclei with large neutron excess by �ssion. The onset of an asym-
metric �ssion mode at these energies seems to considerably enhance
the yield of neutron rich species. Therefore, a method could emerge
for producing neutron rich rare earth nuclei in a region up to now
inaccessible.

The n TOF is a CERN spallation neutron facility at CERN. Its description,
including the main characteristics and also the physics program to be accom-
plished can be found [1] in the TOF Proposal and the recent Technical Design
Report. Here, only some relevant parameters for the following discussion will
be given. All the parameters of the installation resulted from a detailed Monte
Carlo simulation that made use of the advanced FLUKA-EA-MC[2] programs.

This paper is organized as follows: �rstly some parameters of n TOF hav-
ing a particular relevance for the coming discussion will be presented. Then,
some recent data concerning the mass distributions of fragments from �ssion
of 238U and 237Np with neutrons of 5 MeV energy will be reviewed with em-
phasis on the production of exotic species. Corresponding productivities will
be evaluated for the TOF conditions. They will be also compared to the re-
cent results obtained at GSI by �ssioning an 238U (750 A�MeV) incident beam
on Pb and Be targets. Conclusions will be drawn concerning the potential of
TOF to produce/study exotic nuclei.

The 20 GeV/c beam from the CERN-PS will impinge on a spallation target
made of high purity lead (a solid block with the dimensions of 60�80�80 cm3).
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The target is immersed in a water pool that serves also as a moderator and
which attens the spectral shape of the produced neutrons. A ight path of
about 200 m follows after the target and the moderator water layer (5 cm
thick), allowing a precise energy determination of the neutrons by time of
ight. The direction of this ight path makes an angle of 10o with respect to
the incoming proton beam direction. A window with a diameter of 80 cm sepa-
rates the target-moderator assembly from the ight path tube from which the
air is evacuated. The spatial distribution of neutrons at the exit of the window
as expected from the simulations is shown in �g.1a [3]. If only the neutrons
with energies in the interval 1-10 MeV are selected, then the distribution is
narrower and preserves a memory of the initial proton beam direction (see
�g.1b). The simulations indicate that for each incident proton, about 70 neu-
trons are produced that come out of the window. Of these, about one neutron
having the energy in the indicated domain will be placed in a disk with a
diameter of 10 cm centered on the peak in �g.1b. As the PS can deliver 7 1012

protons in a pulse (with a time width � 7ns), some 6 1012 such neutrons will
be created per proton pulse.

In the following one will briey review some recent experimental results
concerning the �ssion of 238U with neutrons of energies between 1 and 5.5
MeV [4]. The authors of [4] measured the mass and total kinetic energy dis-
tributions for fragments resulting from 238U �ssion with neutrons of various
energies and made a multimodal analysis. Their results show that the con-
tribution of the so called standard 2 mode is responsible for the production
of masses placed on the wings of the well known two humped distribution.
Moreover, the contribution of this mode increases with the neutron incident
energy and so does its width. This tendency has been followed up to 5.8 MeV;
it is likely that it will be preserved for some additional 1-2 MeV. For higher
energies, multiple chance �ssion sets in and complicates the analysis. From
the �les kindly provided by the author one can see mass splits as asymmetric
as 63 and 176 at yield levels of about 10�3%. The charge yield curves mea-
sured by [5] extend from Z=30 to Z=62 but the yield values at the extremes
are di�cult to evaluate on the linear scale. The distributions presented in [4]
are the initial ones, in the sense that they are corrected for the evaporated
neutrons. This correction can amount to two neutrons for the heavy fragment
and 0.5 neutrons for the light fragment. One should remark at this point that
such asymmetric splits lead imperatively to nuclei far from stability. On the
isobaric lines 63 and 174 all Z combinations adding up to 92 give rise to very
exotic nuclei. Perhaps the less exotic of all is the pair 63Cr-174Er. Trying to
come close to stability with one fragment will automatically make its partner
more exotic. The above mentioned yield will be distributed among di�erent
pairs of fragments corresponding to di�erent Z splits and the more exotic will
be one of the partners, the lower will be the yield. As charge measurements
are not easy to perform at this sensitivity level one can only suppose that the
products with very asymmetric mass splits will be distributed over a limited
number of charge splits and that moving away from stability with one partner
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will imply a sharp decrease in the yield, e.g. one order of magnitude per step.
In terms of cross sections, taking for 238U a �ssion cross section of 0.66 b, the
mass split 63-174 will appear with a cross section of 0:66 10�5 = 6:6 �b. Con-
sidering another 3 orders of magnitude decrease for more exotic Z splits one
still have a cross section of the order of 1nb. This value is comparable to the
cross sections for production of exotic species recently measured at GSI [6] in
the �ssion of 238U projectiles of 750 A�MeV on a Be target. In particular, the
mass split that lead to the observation of 78Ni in that experiment, 78Ni-159Gd
is not very exotic; instead, the charge split is a very exotic one and it has paid
the price of a very low cross section.

237Np is also a good candidate for producing exotic nuclei by �ssion. Siegler
et al. [7] reported data that present a broad mass distribution and a similar
multimodal analysis. The advantage of 237Np is a higher �ssion cross section
(� 1b) but the disadvantages are its lower N=Z ratio and its radioactivity and
cost.

Some estimations can be made for the production of exotic species using the
induced �ssion of 238U by the spallation neutrons of the TOF installation. For
a disk-shaped UC2 target with a diameter of 10 cm and a thickness of 10 mm
placed on the position of maximum ux for neutrons of 1-10 MeV described
above, about 6 1012 neutrons will traverse the target at each PS pulse. Taking
a mean �ssion cross section value of 0.66 b, one expects about 1011 �ssion
events per burst. If the yield of very asymmetric mass splits is taken (following
[4]) as 10�5, then 106 such cases will occur at each burst. Taking out another
3 orders of magnitude for also producing exotic Z splits one arrives at 103 per
burst. The experience accumulated at ISOLDE [8] shows that the extraction
e�ciency for rare earths vary between 10 and 30% while the post-acceleration
has a 10% e�ciency. This means that in an ISOLDE type installation, about
10 very exotic species per burst can be expected (whose production cross sec-
tion is about 1 nb). The lifetimes in the region of interest are expected to be
rather long and therefore no additional decay losses are considered. In this es-
timative calculation, the thermal �ssion yield has not been considered, though
its contribution is very important in view of the high ux for thermal neutrons.
For less exotic mass and charge splits this contribution will add to the above
described one, such that, for \moderately" exotic nuclei (yields � 10�3), the
productivity may reach as many as 3 106 per pulse. The energy release of the
produced �ssion events in the target (including thermal �ssion) will amount to
about 7 J/pulse. In one day's irradiation, as many as 5000 pulses can be used
which casts rather optimistic perspectives for attaining even such exotic splits
as 60Ca-177Hf. A highly enhanced neutron ux (about one order of magnitude)
can be obtained by inserting the UC2 target assembly into the lead spallation
block. This solution is currently under study.

In conclusion, some perspectives have been presented for using the new
TOF facility at CERN for producing nuclei far from stability. In particular,
this method could provide a bridge to �ll up the "gulf" existing in the chart
of nuclides on the neutron rich side of the rare earth region. At the other
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extreme, the attempt to reach 60Ca, if successful, could cast a new light on
the persistence of shall closure at very high neutron excess.
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Fig. 1. Neutron spatial distribution at the exit of the window: a) all the neutrons;
b) neutrons with energies in the range from 1 to 10 MeV.
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