163 research outputs found

    Efeitos in vitro da Mentha piperita (Lamiaceae) em Dawestrema spp. (Monogenoidea) e toxicidade aguda em Arapaima gigas (Arapaimidae).

    Get PDF
    Este estudo avaliou o efeito in vitro do óleo essencial de Mentha piperita L. sobre monogenoideas e sua ação tóxica para Arapaima gigas.AQUACIÊNCIA

    ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The T antigen is a tumor-associated structure whose sialylated form (the sialyl-T antigen) involves the altered expression of sialyltransferases and has been related with worse prognosis. Since little or no information is available on this subject, we investigated the regulation of the sialyltransferases, able to sialylate the T antigen, in bladder cancer progression.</p> <p>Methods</p> <p>Matched samples of urothelium and tumor tissue, and four bladder cancer cell lines were screened for: <it>ST3Gal.I</it>, <it>ST3Gal.II </it>and <it>ST3Gal.IV </it>mRNA level by real-time PCR. Sialyl-T antigen was detected by dot blot and flow cytometry using peanut lectin. Sialyltransferase activity was measured against the T antigen in the cell lines.</p> <p>Results</p> <p>In nonmuscle-invasive bladder cancers, <it>ST3Gal.I </it>mRNA levels were significantly higher than corresponding urothelium (p < 0.001) and this increase was twice more pronounced in cancers with tendency for recurrence. In muscle-invasive cancers and matching urothelium, <it>ST3Gal.I </it>mRNA levels were as elevated as nonmuscle-invasive cancers. Both non-malignant bladder tumors and corresponding urothelium showed <it>ST3Gal.I </it>mRNA levels lower than all the other specimen groups. A good correlation was observed in bladder cancer cell lines between the <it>ST3Gal.I </it>mRNA level, the ST activity (r = 0.99; p = 0.001) and sialyl-T antigen expression, demonstrating that sialylation of T antigen is attributable to ST3Gal.I. The expression of sialyl-T antigens was found in patients' bladder tumors and urothelium, although without a marked relationship with mRNA level. The two <it>ST3Gal.I </it>transcript variants were also equally expressed, independently of cell phenotype or malignancy.</p> <p>Conclusion</p> <p>ST3Gal.I plays the major role in the sialylation of the T antigen in bladder cancer. The overexpression of <it>ST3Gal.I </it>seems to be part of the initial oncogenic transformation of bladder and can be considered when predicting cancer progression and recurrence.</p

    Characterization of Apoptosis-Related Oxidoreductases from Neurospora crassa

    Get PDF
    The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins

    Anthelminthic efficacy of Cymbopogon citratus essential oil (Poaceae) against monogenean parasites of Colossoma macropomum (Serrasalmidae), and blood and histopathological effects.

    Get PDF
    This study investigated the in vitro and in vivo anthelminthic efficacy, histopathological and hematological effects of Cymbopogon citratus essential oil (EO) in Colossoma macropomum. The major compounds of the essential oil were geranial (45.7%) and neral (33.9%). Essential oil was assayed at concentrations of 100, 200, 300, 400 and 500 mg L?1 for in vitro efficacy against monogeneans Anacanthorus spathulatus, Mymarothecium boegeri and Notozothecium janauachensis of C. macropomum. Two controls were considered for in vitro assays, one with the use of cultivation tank water and the other with cultivation tank water +70% alcohol. The concentration of 500 mg L?1 of the EO in vitro assays showed 100% efficacy against the parasites within 5 min of exposure, causing structural damages to their tegument. The 400 and 300 mg L?1 concentrations were 100% effective with 10 min and 30 min of exposure, respectively. The 200 mg L?1 concentration in vitro assays was also 100% effective within 30 min and the 100 mg L?1 treatment was 100% effective within 100 min of exposure. Total parasite mortality in both control groups occurred within 7 h. Efficacy was 47.1% after therapeutic baths of 20 min for three consecutive days with 60 mg L?1 of this EO. In addition, 60 mg L?1 of EO was the highest concentration tolerated by the fish and it had an anesthetic effect, and it caused increase in plasma glucose levels and decrease in leukocytes and lymphocytes number, as well as hyperplasia, lamellar fusion, detachment and aneurysm in C. macropomum gills. A low efficacy against the monogeneans was shown perhaps due to the low concentration of this EO tolerated by C. macropomum and the strategy used for the therapeutic baths, which may be corrected with a lower concentration of EO and more consecutive days for therapeutic bath

    Desulfovibrio vulgarisCbiKPcobaltochelatase: evolution of a haem binding protein orchestrated by the incorporation of two histidine residues

    Get PDF
    The sulfate-reducing bacteria of the Desulfovibrio genus make three distinct modified tetrapyrroles, haem, sirohaem and adenosylcobamide, where sirohydrochlorin acts as the last common biosynthetic intermediate along the branched tetrapyrrole pathway. Intriguingly, D. vulgaris encodes two sirohydrochlorin chelatases, CbiKP and CbiKC, that insert cobalt/iron into the tetrapyrrole macrocycle but are thought to be distinctly located in the periplasm and cytoplasm respectively. Fusing GFP onto the C-terminus of CbiKP confirmed that the protein is transported to the periplasm. The structure-function relationship of CbiKP was studied by constructing eleven site-directed mutants and determining their chelatase activities, oligomeric status and haem binding abilities. Residues His154 and His216 were identified as essential for metal-chelation of sirohydrochlorin. The tetrameric form of the protein is stabilized by Arg54 and Glu76, which form hydrogen bonds between two subunits. His96 is responsible for the binding of two haem groups within the main central cavity of the tetramer. Unexpectedly, CbiKP is shown to bind two additional haem groups through interaction with His103. Thus, although still retaining cobaltochelatase activity, the presence of His96 and His103 in CbiKP, which are absent from all other known bacterial cobaltochelatases, has evolved CbiKP a new function as a haem binding protein permitting it to act as a potential haem chaperone or transporter

    Eficácia do óleo de Carapa guianensis (Meliaceae) contra infestações de monogenéticos em Colossoma macropomum e seus efeitos hematológicos e histopatológicos.

    Get PDF
    Este estudo teve como objetivo investigar a eficácia de banhos terapêuticos com óleo de Carapa guianensis (andiroba) contra monogenéticos de Colossoma macropomum (tambaqui), bem como os efeitos hematológicos e histológicos nos peixes expostos.Enbrapoa

    Cloning and Characterization of Genes Involved in Nostoxanthin Biosynthesis of Sphingomonas elodea ATCC 31461

    Get PDF
    Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2′-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2′-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed

    Impact of plants on the diversity and activity of methylotrophs in soil

    Get PDF
    Background Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. Results Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. Conclusion In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle
    corecore