251 research outputs found

    Mapping of non-central potentials under point canonical transformations

    Full text link
    Motivated by the observation that all known exactly solvable shape invariant central potentials are inter-related via point canonical transformations, we develop an algebraic framework to show that a similar mapping procedure is also exist between a class of non-central potentials. As an illustrative example, we discuss the inter-relation between the generalized Coulomb and oscillator systems.Comment: 11 pages article in LaTEX (uses standard article.sty). Please check http://www1.gantep.edu.tr/~gonul for other studies of Nuclear Physics Group at University of Gaziante

    Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation

    Get PDF
    We report on the wettability properties of silicon surfaces, simultaneously structured on the micrometre-scale and the nanometre-scale by femtosecond (fs) laser irradiation to render silicon hydrophobic. By varying the laser fluence, it was possible to control the wetting properties of a silicon surface through a systematic and reproducible variation of the surface roughness. In particular, the silicon–water contact angle could be increased from 66° to more than 130°. Such behaviour is described by incomplete liquid penetration within the silicon features, still leaving partially trapped air inside. We also show how controllable design and tailoring of the surface microstructures by wettability gradients can drive the motion of the drop's centre of mass towards a desired direction (even upwards)

    Dynamics of human protein kinases linked to drug selectivity [preprint]

    Get PDF
    Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinases Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome

    Far infrared properties of sintered PbTe doped with boron

    Get PDF
    Far infrared spectra of sintered PbTe doped with boron were analyzed. The measured infrared spectra were fated using a modified plasmon-phonnon interaction model with two additional oscillators (at about 195 cm(-1) and 285 cm(-1)) representing local B-impurity modes. The obtained results were compared with previously published data for a single crystal PbTe sample doped with boron

    Dynamics of human protein kinase Aurora A linked to drug selectivity

    Get PDF
    Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinase Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome

    Far infrared properties of PbTe doped with Hg

    Get PDF
    Single crystal samples of PbTe doped with Hg were grown using the Bridgman method. Far infrared reflectivity spectra were measured at room temperature for samples with 0.5 at. % Hg; 0.9 at. % Hg and 1.4 at. % Hg. The plasma frequency decreased when PbTe was doped with Hg and it was lowest for the PbTe sample doped with 0.5 at. % Hg. The values of the determined optical free carrier mobility increased and was the highest for PbTe doped with 0.5 at. % Hg

    Synthesis, Characterization, Catalytic Activity, and DFT Calculations of Zn(II) Hydrazone Complexes

    Get PDF
    Two new Zn(II) complexes with tridentate hydrazone-based ligands (condensation products of 2-acetylthiazole) were synthesized and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction methods. The complexes 1, 2 and recently synthesized [ZnL3(NCS)2] (L3 = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium) complex 3 were tested as potential catalysts for the ketone-amine-alkyne (KA2) coupling reaction. The gas-phase geometry optimization of newly synthesized and characterized Zn(II) complexes has been computed at the density functional theory (DFT)/B3LYP/6–31G level of theory, while the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO and LUMO) energies were calculated within the time-dependent density functional theory (TD-DFT) at B3LYP/6-31G and B3LYP/6-311G(d,p) levels of theory. From the energies of frontier molecular orbitals (HOMO–LUMO), the reactivity descriptors, such as chemical potential (μ), hardness (η), softness (S), electronegativity (χ) and electrophilicity index (ω) have been calculated. The energetic behavior of the investigated compounds (1 and 2) has been examined in gas phase and solvent media using the polarizable continuum model. For comparison reasons, the same calculations have been performed for recently synthesized [ZnL3(NCS)2] complex 3. DFT results show that compound 1 has the smaller frontier orbital gap so, it is more polarizable and is associated with a higher chemical reactivity, low kinetic stability and is termed as soft molecule

    Far infrared and photoacoustic characterization of iodine doped PbTe

    Get PDF
    Single crystal samples of PbTe doped with PbI2 were made using the Bridgman technique. Far infrared reflectivity diagrams of PbTe doped with 0.4 at% and 0.6 at% Iodine were measured and numerically analyzed. A plasma resonance at about 650 cm(-1) with the reflectivity minima very close to zero was observed for both samples. Thermal diffusivity was determined for the same samples using the photoacoustic method with a transmission detection configuration and the values of the minority free carrier (holes) mobility were calculated
    corecore