108 research outputs found
Nutrients in the shadow-nutrients of substance
While the dietary importance of proteins, essential fatty acids, vitamins and trace elements has been well recognised, the role of shadow nutrients, a class of metabolites, which are biosynthesized in the body and serve vital functions, such as lipoic acid, choline, inositol, taurine and carnitine, has not been adequately appreciated. There are reasons to believe that during infancy and in ageing, biosynthesis of these metabolites may be limited. The objective of this review is to highlight the essentiality of these nutrients and the need for their supplementation in the diets of infants and in elderly people. Provision of shadow nutrients where the necessary biosynthetic machinery might not have developed to full stature or might have slowed down, is a new concept in nutrition which needs attention
Fibroblast growth regulatory factor inhibits DNA synthesis in BALB/c 3T3 cells by arresting in G1
A cell surface macromolecular component from quiescent BALB/c 3T3 mouse cells (designated fibroblast growth regulatory factor, FGRF) inhibits DNA synthesis and cell division in growing 3T3 cells. Addition of FGRF to synchronized populations of growing 3T3 cells in the late G1 or early S phase did not inhibit DNA synthesis in the immediate S phase. However, a significant inhibition was observed in the S phase of the next round of cell cycle. Cells exposed to the regulatory factor in late S/early G2 or early G1 showed reduced DNA synthesis in the upcoming S phase; the late S/early G2 cells were more sensitive to inhibition than the cells in the G1. Further, the regulatory factor delayed the progression of G0/G1-arrested cells into the next S phase. These results suggest that the physiological effect of FGRF is to arrest cells in early G1, thus preventing their entry into a new round of cell cycle. In contrast to untransformed 3T3 cells, mouse cells transformed by SV40 were not subjected to growth-arrest by the regulatory factor, although the transformed cells contain active FGRF that inhibits DNA synthesis in growing 3T3 cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23331/1/0000271.pd
Determining Vitamin D Status: A Comparison Between Diabetic And Non-diabetic Women With Breast Cancer By RP-HPLC
Background:
Suboptimal levels of Vitamin D, remains a common problem worldwide and its prevalence is high in India, ranging from 70-100%. Several molecular mechanisms have been found about the effects of Vitamin D in modulating glycemic levels and its protective nature in the development of breast cancer. Breast cancer in India is a common problem and studies regarding its association with Vitamin D levels among diabetics remain inconclusive. This study aims to find the association between Vitamin D status and breast cancer in diabetic and non-diabetic women.
Materials and methods:
25 hydroxy vitamin D levels were estimated by RP-HPLC. A total of 25 serum samples were analysed (20 Breast cancer patients+5 normal).
Results:
Serum sample analysis report of breast cancer patients (irrespective of diabetic status) showed 50% low Vitamin D compared to normal individuals.
Conclusions:
Vitamin D deficiency is very common among women suffering from breast cancer. Although diabetic breast cancer women have lower Vitamin D levels when compared to non-diabetic women, the results in this study are not statistically significant
Lipoic acid and diabetes-Part III: Metabolic role of acetyl dihydrolipoic acid
Rat liver lipoyl transacetylase catalyzes the formation of acetyl dihydrolipoic acid from acetyl coenzyme A and dihydrolipoic acid. In an earlier paper the formation of acetyl dihydrolipoic from pyruvate and dihydrolipoic acid catalyzed by pyruvate dehydrogenase has been reported. Acetyl dihydrolipoic acid is a substrate for citrate synthase, acetyl coenzyme A carboxylase and fatty acid synthetase. The Vmax for citrate synthase with acetyl dihydrolipoic acid was identical to acetyl coenzyme A (approximately 1 μmol citrate formed/min/mg protein) while the apparent Km was approximately 4 times higher with acetyl dihydrolipoic acid as the substrate. This may be due to the fact that synthetic acetyl dihydrolipoic acid is a mixture of 4 possible isomers and only one of them may be the substrate for the enzymatic reaction. While dihydrolipoic acid can replace coenzyme A in the activation of succinate catalyzed by succinyl coenzyme A synthetase, the transfer of coenzyme A between succinate and acetoacetyl dihydrolipoic acid catalyzed by succinyl coenzyme A: 3 oxo-acid coenzyme A transferase does not occur
Lipoic acid and diabetes II: Mode of action of lipoic acid
Intraperitoneal administration of lipoic acid (10 mg/100 g) does not effect changes in serum insulin levels in normal and alloxan diabetic rats, while normalising increased serum pyruvate, and impaired liver pyruvic dehydrogenase characteristic of the diabetic state. Dihydrolipoic acid has been shown to participate in activation of fatty acids with equal facility as coenzyme A. Fatty acyl dihydrolipoic acid however is sparsely thiolyzed to yield acetyl dihydrolipoic acid. Also acetyl dihydrolipoic acid does not activate pyruvate carboxylase unlike acetyl coenzyme A. The reduced thiolysis of β-keto fatty acyl dihydrolipoic acid esters and the lack of activation of pyruvic carboxylase by acetyl dihydrolipoic acid could account for the antiketotic and antigluconeogenic effects of lipoic acid
Application of a PCA-based Fast Radiative Transfer Model to XCO_2 Retrievals in the Shortwave Infrared
In this work, we extend the principal component analysis (PCA)-based approach to accelerate radiative transfer (RT) calculations by accounting for the spectral variation of aerosol properties. Using linear error analysis, the errors induced by this fast RT method are quantified for a large number of simulated Greenhouse Gases Observing Satellite (GOSAT) measurements (N≈ 30,000). The computational speedup of the approach is typically 2 orders of magnitude compared to a line-by-line discrete ordinates calculation with 16 streams, while the radiance residuals do not exceed 0.01% for the most part compared to the same baseline calculations. We find that the errors due to the PCA-based approach tend to be less than ±0.06 ppm for both land and ocean scenes when two or more empirical orthogonal functions are used. One advantage of this method is that it maintains the high accuracy over a large range of aerosol optical depths. This technique shows great potential to be used in operational retrievals for GOSAT and other remote sensing missions
Simulated retrievals for the remote sensing of CO_2, CH_4, CO, and H_2O from geostationary orbit
The Geostationary Fourier Transform Spectrometer (GeoFTS) is designed to measure high-resolution spectra of reflected sunlight in three near-infrared bands centered around 0.76, 1.6, and 2.3 μm and to deliver simultaneous retrievals of column-averaged dry air mole fractions of CO_2, CH_4, CO, and H_2O (denoted XCO_2, XCH_4, XCO, and XH_2O, respectively) at different times of day over North America. In this study, we perform radiative transfer simulations over both clear-sky and all-sky scenes expected to be observed by GeoFTS and estimate the prospective performance of retrievals based on results from Bayesian error analysis and characterization.
We find that, for simulated clear-sky retrievals, the average retrieval biases and single-measurement precisions are < 0.2 % for XCO_2, XCH_4, and XH_2O, and < 2 % for XCO, when the a priori values have a bias of 3 % and an uncertainty of 3 %. In addition, an increase in the amount of aerosols and ice clouds leads to a notable increase in the retrieval biases and slight worsening of the retrieval precisions. Furthermore, retrieval precision is a strong function of signal-to-noise ratio and spectral resolution. This simulation study can help guide decisions on the design of the GeoFTS observing system, which can result in cost-effective measurement strategies while achieving satisfactory levels of retrieval precisions and biases. The simultaneous retrievals at different times of day will be important for more accurate estimation of carbon sources and sinks on fine spatiotemporal scales and for studies related to the atmospheric component of the water cycle
Earth as a Proxy Exoplanet: Deconstructing and Reconstructing Spectrophotometric Light Curves
Point-source spectrophotometric (single-point) light curves of Earth-like planets contain a surprising amount of information about the spatial features of those worlds. Spatially resolving these light curves is important for assessing time-varying surface features and the existence of an atmosphere, which in turn is critical to life on Earth and significant for determining habitability on exoplanets. Given that Earth is the only celestial body confirmed to harbor life, treating it as a proxy exoplanet by analyzing time-resolved spectral images provides a benchmark in the search for habitable exoplanets. The Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate Observatory (DSCOVR) provides such an opportunity, with observations of ~5000 full-disk sunlit Earth images each year at 10 wavelengths with high temporal frequency. We disk-integrate these spectral images to create single-point light curves and decompose them into principal components (PCs). Using machine-learning techniques to relate the PCs to six preselected spatial features, we find that the first and fourth PCs of the single-point light curves, contributing ~83.23% of the light-curve variability, contain information about low and high clouds, respectively. Surface information relevant to the contrast between land and ocean reflectance is contained in the second PC, while individual land subtypes are not easily distinguishable (<0.1% total light-curve variation). We build an Earth model by systematically altering the spatial features to derive causal relationships to the PCs. This model can serve as a baseline for analyzing Earth-like exoplanets and guide wavelength selection and sampling strategies for future observations
An outbreak of methicillin-resistant Staphylococcus aureus (MRSA) infection in dermatology indoor patients
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a
major nosocomial pathogen. Indiscriminate and increased use of systemic
antibiotics has led to the emergence of MRSA. Infected or colonized
ward patients are the main reservoir of infection. Once colonized, the
risk of subsequent local and systemic infections is high, especially in
the elderly, and in debilitated and immunosuppressed patients. Methods:
We report an outbreak of MRSA in the dermatology ward of a tertiary
care hospital and describe measures taken to control it. Results: Ten
patients were found to be MRSA positive over a span of three months
while screening swabs from wet lesions in indoor patients. On the basis
of risk assessment, they were treated with appropriate systemic and
topical therapy. One patient died while the remaining nine patients
showed a good response to therapy. All the MRSA isolates were found to
be sensitive to vancomycin, teicoplanin and linezolid. Conclusion: This
is the first case report of MRSA infection in dermatology indoor
patients in India
- …