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Abstract In this work, we extend the principal component analysis (PCA)-based approach to accelerate
radiative transfer (RT) calculations by accounting for the spectral variation of aerosol properties. Using
linear error analysis, the errors induced by this fast RT method are quantified for a large number of simulated
Greenhouse Gases Observing Satellite (GOSAT) measurements (N = 30,000). The computational speedup
of the approach is typically 2 orders of magnitude compared to a line-by-line discrete ordinates calculation
with 16 streams, while the radiance residuals do not exceed 0.01% for the most part compared to the same
baseline calculations. We find that the errors due to the PCA-based approach tend to be less than +0.06 ppm
for both land and ocean scenes when two or more empirical orthogonal functions are used. One advantage
of this method is that it maintains the high accuracy over a large range of aerosol optical depths.

This technique shows great potential to be used in operational retrievals for GOSAT and other remote
sensing missions.

1. Introduction

Carbon dioxide (CO,) is the most important anthropogenic greenhouse gas, and its increase from the begin-
ning of the industrial era (middle to late eighteenth century) has contributed 2.2 + 1.1 W/m? to the global
radiative forcing (Myhre et al., 2013). Space-based observations of CO, have the advantage of near-global
coverage (dependent on the season), with satellite revisit times on the order of days. Several dedicated
satellite missions have been launched recently that focus on observing the spatiotemporal distribution of
atmospheric CO, with sufficient coverage and precision to estimate regional fluxes between the surface and
atmosphere.

The primary space-based measurement concept for CO, is based on spectroscopic measurements of CO,
absorption bands in the shortwave infrared spectral range (SWIR) of reflected sunlight. Compared to CO,
absorption bands in the thermal infrared (e.g., 15 pm), bands in the SWIR offer the advantage that measure-
ments are sensitive down to the lowermost part of the atmosphere, hence meeting the requirements needed
to constrain carbon fluxes from and to the surface. The Greenhouse Gases Observing Satellite (GOSAT) (Kuze
et al,, 2016), the first dedicated CO, mission, for example, measures in three bands within the SWIR and the
near infrared (NIR) with high resolution; two of those are used to measure CO, at 1.61 pm (so-called weak
CO, band) and 2.06 pm (so-called strong CO, band), whereas the other one at 0.76 pm (O, A band) mea-
sures atmospheric molecular oxygen. Since the amount of oxygen in the atmosphere is known, any changes
in the expected absorption features in the O, A band are primarily a result of aerosols and surface pressure.
The presence of aerosols and variations in surface pressure will change the path length of the light and thus
will induce errors in the retrieved CO, columns, if not corrected. Using the information in the O, A band, the
surface pressure can be constrained better in order to increase the accuracy of the obtained CO, columns.
Further, there is additional spectral information in the O, A band and the strong CO, band that allows for a
better determination of the aerosol characteristics present in the scene.

Retrieving the columns of atmospheric CO, from the aforementioned measurements is primarily achieved
through an inversion scheme coupled with a so-called forward model. The forward model describes the
physics involved in the propagation of light through the atmosphere, its interactions with the constituents
of the atmosphere as well as the surface, and includes the response of the instrument. The inversion
scheme used in this work relies on Bayesian optimal estimation and calls the forward model iteratively,

SOMKUTI ET AL.

PCA-BASED FAST RT FOR XCO, RETRIEVALS 10,477


http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8996
http://orcid.org/0000-0002-5858-8471
http://orcid.org/0000-0003-3944-9879
http://orcid.org/0000-0003-3154-9429
http://orcid.org/0000-0002-8951-3907
http://dx.doi.org/10.1002/2017JD027013
https://doi.org/10.1002/2017JD027013
http://creativecommons.org/licenses/by/4.0/

@AG U Journal of Geophysical Research: Atmospheres 10.1002/2017JD027013

until the forward model fits the measured radiance in terms of a maximum likelihood solution (Rodgers, 2000).
With each iteration, a set of parameters (the state vector) is adjusted to minimize the difference between mod-
eled and measured spectral radiances. Once the forward model matches the measurements, the adjusted
parameters, such as the concentration of CO,, are then said to be retrieved. In such a full physics approach
(Cogan et al,, 2012), the scattering properties of the atmosphere due to aerosols and thin clouds are not only
considered in the forward model but are also simultaneously retrieved.

In order to account for scattering in the forward model, a sophisticated multiple-scattering (MS) radiative
transfer (RT) model (Natraj & Spurr, 2007; Spurr, 2008; Spurr & Natraj, 2011) has to be utilized to treat the
propagation of sunlight through the atmosphere. Compared to a nonscattering model, these calculations
can be orders of magnitude more computationally expensive. Ignoring scattering altogether, on the other
hand, can lead to significant errors in the top-of-the-atmosphere (TOA) radiances, which then leads to errors
in the retrieved quantities (Aben et al., 2007; Natraj et al., 2007). Nelson et al. (2016) have shown that even
after filtering for clear-sky conditions, neglecting scattering and absorption by clouds and aerosols can lead
to increased errors unless restrictive filtering of the scenes is performed.

Satellites are generating a quickly growing volume of data (from ~8,000 clear-sky scenes per day for the
SCIAMACHY instrument, up to ~200,000 for NASA’s OCO-2, Taylor et al., 2016, or a CarbonSat-like mission,
Buchwitz et al., 2013) which necessitates acceleration methods that reduce the computational effort for RT
calculations while at the same time retaining a high level of accuracy of the forward model. As pointed out
by Chevallier et al. (2007), regional biases in the low sub-ppm (parts per million, 0.1 ppm = 0.03%) range can
significantly alter the surface fluxes obtained from flux inversions. Consequently, the adopted RT schemes uti-
lized by retrievals must not result in systematic errors of this order of magnitude that are driven by geophysical
parameters like aerosol loadings.

Several fast RT methods have been formulated specifically for greenhouse gas retrievals. The low-streams
interpolation (LSI) (O'Dell, 2010) and linear-k (Hasekamp & Butz, 2008) methods both belong to the class of
spectral binning methods; these methods replace the many (roughly 30,000 per band) line-by-line calcula-
tions by a few representative calculations, which they use to derive the result for all spectral points. While
linear-k requires only a small number of MS calculations, LSI additionally requires low-accuracy line-by-line
MS calculations. Accuracy, in the case of RT models utilizing the discrete ordinates method, refers to the num-
ber of quadrature angles (see, e.g., Stamnes et al., 1988 for details). A higher number of quadrature angles
will increase the numerical accuracy of the solution at the cost of a substantial increase in computational
effort (computational time typically increases as the cube of the number of quadrature angles). For both LSI
and linear-k, the only tuneable parameter, apart from the number of quadrature streams employed for the
high-accuracy calculations (which is a parameter of the employed RT models, rather than the acceleration
scheme), is the set of bin boundaries (usually approximately logarithmically spaced in the gas optical depth
dimension) which has to be chosen by the user for the specific spectral ranges. While this is true for the
PCA-based approach as well, it offers the opportunity for the user to choose the number of empirical orthog-
onal functions (EOFs) used in the reconstruction of the radiances. This provides a second parameter to further
tune the reconstruction accuracy according to the requirements of the application. The error introduced by
the existing fast RT methods mentioned above shows a dependence on the viewing geometry (see O'Dell,
2010) as well as the total aerosol optical depth (see Hasekamp & Butz, 2008); the PCA-based approach shows
little sensitivity to aerosol loading as well as the viewing geometry (as discussed in sections 4.2 and 4.3), which
makes it suitable for a much larger range of geophysical parameters.

In this paper, we apply a PCA-based spectral binning method to CO, retrievals from high-resolution GOSAT
SWIR spectra to characterize the CO, retrieval error and its sensitivities. Using linear error analysis, we show
that the high accuracy is retained even for larger aerosol loadings.

In section 2, the PCA-based approach is introduced and summarized (a more detailed treatment is provided in
Appendix A1). We then describe the setup of the simulations as well as the linear error analysis method in
section 3. The results are presented in section 4, where we define a metric to evaluate residual errors and
analyze the entire ensemble against this metric. The residual errors then are translated into XCO, errors, and
their distribution and characteristics are discussed. We conclude section 4 using a subset of simulations to
show how different instrument specifications influence the accuracy of the PCA-based approach.
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2. PCA-Based Approach

RT calculations require optical properties for a given atmosphere and surface. The atmosphere is typically
divided into multiple layers, where the optical parameters are assumed to be uniform within a layer but dif-
ferent between layers. The most commonly used parameters are the optical depth z, the single-scattering
albedo w, and a representation of the scattering phase function, usually some expansion coefficients f.
In addition to the atmospheric parameters, a surface model is employed; in our case we use a purely
Lambertian surface model for land scenes that is defined solely by the Lambertian albedo parameter p. For
ocean scenes, we employ the isotropic Cox-Munk surface model (Cox & Munk, 1954) that is parametrized by
the magnitude of the wind speed (but not the direction); the refractive index of water is assumed the same for
every scene.

ATOA spectrum (see Figure 1) can be obtained by line-by-line RT calculations for the spectral range of interest.
The RT calculations need to be carried out on a fine spectral grid, which in some cases means a few tens of
thousands of points. Thus, a set of atmospheric optical properties that fully define the model atmosphere
consist of a large number of 7;;, w;;, and f;; ,,, where i is the index describing the spectral dimension, j is
the layer index, and m denotes the expansion coefficient order. Due to the layered structure of the model
atmosphere, one can consider the optical properties at a grid point i as profiles; for example, 7 is the optical
depth profile for a specific wavelength index i. More details on the construction of the optical properties

themselves can be found in Appendix AT.

Similar to the LSland linear-k methods, the PCA-based approach makes use of the large amount of information
redundancy within the spectral range of an absorption band that is present in the optical properties. The
representative profiles of the optical properties can be inferred from PCA. Within the small spectral range of a
typical absorption band, the scattering properties and surface reflectance vary little compared to the dynamic
range of gas absorption. This is even more so if the spectral points and the corresponding sets of optical
parameters are previously divided into “bins” that are defined in gas optical depth space, where ideally all
points within a bin are optically similar. The computationally expensive MS calculations can be performed for
representative profiles for a bin (rather than for every point in the bin), and the result for all points in that bin
can then be derived from that rather effortlessly.

We utilize the binning scheme described in Kopparla et al. (2016), which proposes 11 bins in total gas optical
depth space, where each bin is further subdivided into two bins according to the single-scattering albedo. It
is acknowledged that the binning strategy can have an impact on the reconstruction accuracy and therefore
on the results derived from the reconstructed radiances. However, as long as the same binning strategy is
used for every scene, we expect mainly a shift in the magnitude of the relevant results (e.g., XCO, errors), the
dependency on geophysical parameters to be similar when compared to a different binning strategy. The
issue of binning strategy is explored in detail in Kopparla et al. (2017).

The following paragraph briefly outlines the steps needed to approximate a high-accuracy RT calculation
for a band using the PCA-based approach. It is assumed that assignment of spectral points into bins has
already taken place, and each step has to be repeated for every bin. A detailed elaboration on all steps is
found in the Appendix, as well as in Natraj et al. (2005, 2010) and Spurr et al. (2013). It is assumed that a fast,
low-accuracy (two-stream) line-by-line calculation of the TOA radiances (/,,,, ;) is performed beforehand for
every spectral point in the band—the PCA-based approach then adjusts those calculations to approximate
the high-accuracy line-by-line TOA radiances using correction factors J;:

lapprox,i = Ilow,i - exp(J;). (1)

1. Construct the optical state matrix 0 = {7, 7 ®_q, ¢, p} which contains the total optical depth profiles ,
the optical depth profiles due to Rayleigh scattering 7 ®®), the aerosol scattering coefficients q (aerosol
absorption is already included in the total optical depth ), the aerosol interpolation coefficients c (see
Appendix A1 for the meaning of q and c), and the Lambertian surface albedos p. O is then transformed
by taking the natural logarithm elementwise: F = In(0). F is subsequently mean subtracted (the mean
of every column is subtracted from every element in that column) to form F, from which the principal
components (PC) are extracted. Note that the inclusion of q and c in O, which was not done in previ-
ous work, is crucial to fully take the spectral dependence of the scattering properties of aerosols into
account.
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Figure 1. Typical modeled spectra using GOSAT instrument specifications. (top) O, A band, (middle) weak CO, band,

and (bottom) strong CO, band. All spectra have been normalized by the highest value within the respective band.

2. PCs are calculated by solving the eigenproblem CV, = ,V, with eigenvectors, or EOFs, V, and eigenvalues
n for the covariance matrix C:
—T—
c= 1 (FF). 2

N, —1
N, being the number of spectral points in the given bin. The eigenvectors then are scaled to obtain

w, = \/'7_k V,, before the original mean-removed transformed optical properties are projected onto the
scaled EOFs to yield the PCs P,

P, = nlki w,. 3)

3. For every bin, a set of RT calculations with optical parameters representative of that bin have to be per-
formed: one for the so-called mean optical state 0 and 2 x N calculations for perturbed optical states
O, N is the total number of EOFs used for the reconstruction and is typically between 1 and 5. Binned
mean optical properties 0¥ are constructed simply as the mean of all spectral values in the bin, following
a potential back transformation from logarithmic space. For every EOF k used in the reconstruction, two
optical states 0k, each perturbed in EOF space, have to be created as well. These calculations can be seen
in detail in Appendix A5.

4. The optical states 0© and 0@k, along with other auxiliary parameters (layer altitudes, solar and viewing
angles, etc.), contain all information needed to perform RT calculations. For every one of these optical states,
we run two RT calculations, one each in low-accuracy mode and one in high-accuracy mode (e.g., low and
high number of quadrature streams), in order to calculate the ratios J:

SO =1n [high () /hgy, (O], @
S =10 [ygn (00 /hg,, (OFK)] . ®

5. Using the principal components, the ratios are then used to map the correction factors back into spectral
(e.g., wavelength or wave number) space, denoted by the index i:

Neor Neor
JER _ =k JEK _ 20 4 gk
h=t04 Y Py Y P, (6)
k=1 k=1

The final step is then to multiply the low-accuracy result /,,,, ; by the correction factors J; as mentioned in
equation (1) to obtain the approximation to the high-accuracy calculation Jygp, ;.
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3. Setup of Geophysical Simulations

To realistically characterize the CO, retrieval errors and the spectral residuals of the PCA-based method, we
perform a set of simulations that represent the global distribution of expected scenarios covering a wide
range of geophysical parameters. Roughly 30,000 model atmospheres have been used to compute the TOA
radiances which correspond to locations of GOSAT soundings from two seasons: May, June, and July 2011
(summer) and November, December, and January 2011/2012 (winter). The GOSAT soundings have been cho-
sen for near-uniform global coverage (cutoff at —60° southern latitude to exclude Antarctica), such that there
are at most five locations in every 2.0 by 2.0° grid box; we choose clear-sky scenes only. The cloud screen-
ing was carried out prior to the simulations via an O, A band fit, where cloudy scenes were identified when
the apparent surface pressure deviated more than 30 hPa from the value obtained from European Centre for
Medium Range Weather Forecasts (ECMWF) ERA-Interim data.

For each season, simulations for ocean glint scenes have been performed as well, where the wind speed
parameter is also taken from ECMWF ERA-Interim. The two seasons are in contrast to each other mostly in
terms of solar zenith angles and the associated signal level.

The model atmospheres for each individual sounding are based on Boesch et al. (2013). Temperature,
humidity, and gas profiles are extracted from ECMWF ERA-Interim and the model CO, from the Copernicus
Atmosphere Monitoring Service (CAMS) respectively; the spectrally invariant surface albedos (over land) per
band are estimated from the radiances in the measured GOSAT spectra. Aerosol profiles are calculated on
a per scene basis from CAMS and consist of five different tropospheric types (sea salt, dust, organic matter,
black carbon, and sulfate), which are partly further differentiated by size bins and dependence on relative
humidity. Every scene contains a thin cirrus cloud aerosol mixture with a constant total optical depth of 0.005.
The Gaussian height profile is parametrized by a latitude-dependent mean height and width according to
Eguchi et al. (2007).

Due to the global distribution of the sounding locations (see Figure 2), the simulations cover a wide range of
scenes with different surface types, varying aerosol loadings, and solar zenith angles.

3.1. Linear Error Analysis

The forward model error (see section 3.1) is influenced by the measurement noise covariance S, which is
assumed to be a diagonal matrix containing the squared noise equivalent radiances. The three bands in the
SWIR utilized for full physics XCO, (dry-air column-averaged carbon dioxide mole fractions) retrievals exhibit
different radiance levels, and therefore, the associated signal-to-noise ratios are different for each band due
to the spectral dependence of the reflective properties of the various surfaces. We use the linear sensitivity
analysis framework described in Rodgers (2000), in which the retrieval error can be estimated from the forward
model error. The error of the state vector AXEOF is derived from the gain matrix G, which maps spectral features
into state vector space:

G=SK'(KS,K +S)7, @)

AXF = GAf = G [f™ (x,b) — fPP(x, b)] . (8)

S, is the prior covariance matrix (Rodgers, 2003), and the noise covariance S, is calculated from the stan-
dard deviation of the GOSAT out-of-band signal (Cogan et al., 2012). The weighting functions K = of"¢ /ox
are obtained from the high-accuracy simulation f"¢, which is a line-by-line simulation using 16 quadrature
streams (8 in each half-space). fPP™* s the simulation using the PCA-based approach. Both simulations ft™®
and fePPX gre evaluated using the same state vector x and auxiliary parameters b so that the only differ-
ence between the two runs is the RT portion of the forward model. b contains non-state vector quantities
that are still needed for forward model computations, such as the volume mixing ratios of nonretrieved gases
(0,, CH,, and H,0) and various instrument parameters.

The parts of the state vector error that correspond to the CO, profile (AxEOF (€02)) are converted to a
column-averaged value using the pressure weighting function h (O'Dell et al., 2012):

AXCO, = h7 AxEOF (€02, 9)
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Summer Winter

0.0 0.2 0.4
Total Aerosol OD

Figure 2. Locations for which forward model simulations are performed and corresponding total aerosol optical depths.
For both seasons, the coverage is almost global, where the shift toward high southern latitudes is due to the changing
solar zenith angle for the winter season. Note the two different latitudinal bands covered by the glint observations over
the oceans in the two seasons. Apart from Boreal forests and Greenland, most landmasses are covered in both seasons.

4. Results

4.1. Spectral Residuals

Before focusing on the entire ensemble of model simulations, we pick out a single case and take a closer look
at the spectral residuals for this scene. We use a quantity that gives the relative error of the radiances on a per
wavelength basis with respect to the full line-by-line calculation I, ; for each wavelength index i as

I 0 Ilbl,'
Bl = 2, 10
i

This quantity is shown for all three bands using 1, 2, 3, and 5 EOFs per bin (Ngog,) in Figure 3. The particular
scene chosen here corresponds to a GOSAT measurement near Beijing (land). For this model atmosphere, the
total aerosol optical depth (AOD) is high with a value of 0.82; the viewing zenith is off nadir at ~14°, and the
solar zenith angle is around 25°. This scene, whose reconstruction accuracy is shown in Figure 3, is challeng-
ing because of the high aerosol loading, which increases the MS contribution relative to the single-scattered
component, thereby amplifying the difference between the low-accuracy (two stream) and high-accuracy
calculations; this is therefore a harder problem for the PCA model compared to a scenario with low AOD.

Since the relative error (equation (10) is calculated for each pixel individually, spectral points in the center
of deep absorption lines with very small TOA radiances show larger relative errors, mostly in the strong CO,
band, which also increases the residual root-mean-square (RMS). The interquartile range (IQR) of the residual
absolute values is hence also stated in Figure 3, which is less sensitive to single outliers, and serves as a robust
metric to evaluate the magnitude of the residuals for the entire spectral band.

The residuals in Figure 3 show that the spectrally varying scattering properties are well compensated for,
thanks to the extension of the formalism to include necessary quantities in the decomposition and recon-
struction. There is no significant overall or piecewise slopes unlike in earlier work (see, e.g., Figure 1 in Natraj
etal, 2010). For the sounding in Figure 3, the signal-to-noise ratios for the three bands are 182, 298, and 286,
respectively. Taking the inverse of these ratios and stating them as percentages reveals that the noise levels
as a fraction of the continuum level radiance for this particular sounding are approximately 0.55%, 0.34%, and
0.35%. Thus, the spectral residuals are roughly 1 order of magnitude smaller than the noise levels when using
1 EOF.

Despite the presence of a few points with large relative errors in the line centers, the expected result is
obtained with both RMS and IQR decreasing with Ngq, increasing. The biggest change is seen going from 1
to 2 EOFs, with a further decrease for 3 EOFs. The difference between 3 and 5 EOFs is largest in the weak CO,
band for this case; however, the improvement is not the same in the other two bands.
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RMS is the root-mean-square, and IQR is the interquartile range.
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Figure 5. Global map of residual magnitudes when using 1 EOF. Bins for ocean simulations have been chosen to be large enough to allow for continuous
patches despite the spacing of orbits (see Figure 2), which makes a visual assessment easier. The factors shown in the top right corner of each map indicate

the factors, with which the respective ensembles have been multiplied (L for land and G for glint) such that the values can be plotted using the same color map.
Regions over land with larger residuals are easily identified, being dusty deserts (Sahara and Arabian peninsula), regions with large amounts of sea salt

(high southern latitudes) and aerosol outflow regions (mid-Atlantic, western North Pacific) as well as high latitudes with higher solar zenith angles.

We investigate the residuals for the entire ensemble of simulations by assessing the histograms of the IQRs
in Figure 4. The histograms are generally consistent with the trend shown in Figure 3; increasing the number
of EOFs typically reduces the spectral residuals. For simulations that employ the Lambertian surface model
(land), both the O, A band and the strong CO, band show an improvement when increasing the number of
EOFs from 2 to 3, whereas the improvements for the weak CO, band are only marginal when considering the
entire ensemble. For the Cox-Munk surface model, on the other hand, the major improvement seems to be
when going from 1 to 2 EOFs.

Ocean glint scenes exhibit systematically higher residuals for the O, A band and the strong CO, band, and
lower residuals for the weak CO, band, when compared to land scenes. This result is counterintuitive, since
glint scenes are more dominated by the SS contributions and thus have smaller MS contributions compared
to the SS magnitude. With a small MS contribution, the reconstruction accuracy will depend linearly on the
the ratio of MS to SS radiances. However, when the MS contributions are higher (in our case up to ~120% for
land scenes and ~50% for ocean scenes), we are no longer in the linear regime. Here the residuals will depend
on the observation geometry, surface model, and aerosol scattering properties in a nontrivial fashion.

To explore the spatial structure of the error distribution in Figure 4, IQR (|/,4 ;1) is displayed on global maps
in Figure 5. Due to the varying scales of the residuals for each map, the respective data are scaled by a factor
that is indicated in every subplot. The maps reveal apparent drivers for the residuals. For glint simulations, the
largest residuals are seen in regions associated with heavy aerosol loadings, such as the mid-Atlantic Ocean
with its desert dust outflow and larger viewing and solar zenith angles. Over land, the residuals are larger with
increasing solar zenith angles as well as increasing aerosol optical depths.

4.2, XCO, Errors

Section 4.1 highlights certain regions and scenarios for which the PCA-based approach produces larger resid-
uals. These regions, however, do not directly translate into the regions with the largest XCO, errors, as the
signal-to-noise ratio and the gain matrix affect those errors according to equation (7).

Figure 6 shows the calculated errors for the two seasons distributed on global maps as well as separate
histograms for land and ocean simulations. There is a notable difference, between the summer and winter
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Figure 6. Estimated XCO, errors displayed as both maps and histograms. For the case of using only 1 EOF, the errors on the map were scaled by a factor of
0.1 such that the same color bar could be used. Regions with higher surface reflectance and thus higher SNR clearly result in higher XCO, errors (deserts) over
land. Over ocean, errors are increased in the mid-Atlantic due to larger AODs (compare Figure 2) and the larger viewing angles at the edges of the glint

observation bands.

seasons, in XCO, error behavior for scenes over the Sahara, the Arabian peninsula, and over parts of India;
these are all regions with high signal-to-noise ratio measurements (or equivalently, high albedo in the strong
CO, band). For the summer season, the XCO, error is larger over these areas compared to others when 1, 2, or
3 EOFs are used. In contrast, for the winter season, this is true only when 1 EOF is used.

Table 1

Percentage of Scenes With XCO, Errors Larger Than 0.1 ppm

# EOFs Land (summer) Glint (summer) Land (winter) Glint (winter)
1 67.09% 82.10% 78.85% 76.84%
2 5.59% 1.36% 5.76% 0.29%
3 5.63% 0.75% 2.18% 0.47%
5 0.39% 0.78% 0.21% 0.40%

SOMKUTI ET AL.

PCA-BASED FAST RT FOR XCO, RETRIEVALS

10,485



@AG U Journal of Geophysical Research: Atmospheres 10.1002/2017JD027013

4 = = 30.75
- - =40.50
El
£ - - 40.25
-
u% o= = EI H — = H — — = EI_O'OO
S - - 4-0.25
SN
- - ~4-0.50
# EOF(s): 1 # EOF(s): 2 # EOF(s): 3
—4 1 1 1 [ —0.75

1 1 1 C_1 1 1 1 1 C_1 1 1
0.005 0.01 0.1 025 05 0.005 001 01 025 05 0.005 001 0.1 025 05
Total Cirrus Optical Depth

Figure 7. XCO, errors at various cirrus cloud optical depths for a small subset of the winter season scenes. There is

a dramatic reduction of the error magnitude going from 1 EOF to 2 EOFs, especially for cases with cirrus optical depth
larger than 0.1. The tick labels for the 1 EOF case are seen on the left-hand side of the three plots, whereas the tick labels
for the cases of 2 and 3 EOFs are seen on the right-hand side. Whiskers in this plot have been suppressed.

This difference can be seen in the spectral residuals (Figure 5) and is driven mainly by the changing solar zenith
angle, which is roughly between 10° and 20° in the summer and between 30° and 60° in the winter season.

The effect of changing the number of EOFs on the dependence of the residual errors with respect to optical
properties is also seen in Figure 6. For summer scenes over the Sahara, the estimated XCO, error is largely
independent of the total AOD using only 1 EOF but shows a rather clear dependence when using 2 or 3 EOFs.
The exact opposite behavior is seen for the winter season. SNR dependence of the estimated error is similar
to the AOD dependence: for summer scenes, using more than 1 EOF leads to a clear dependence, whereas for
winter scenes, this dependence is much weaker.

The generally larger spectral error for glint observations (see Figure 4) translates into a larger mean XCO,
error. Land scenes in the summer season show a higher error over the Sahara and Arabian peninsula, coin-
ciding with those scenes with a high signal-to-noise ratio. There is a change in sign for the overall error for
land observations, but the magnitude of the errors is already small with an IQR of the distributions of around
0.06 ppm and lower. Glint-type soundings using the Cox-Munk surface model show higher scatter for each
season, when only 1 EOF is used, and are comparable to land scenes when using 2 or 3 EOFs. To summarize
the dependence of the XCO, error on the number of EOFs, the percentage of scenes with errors larger than
0.1 ppm is stated in Table 1.

4.3. Influence of Cirrus Optical Depth

To assess the errors induced by different cirrus optical depths, the XCO, errors of a small subset of N ~ 500,
globally distributed scenes from the winter/land season set, were additionally simulated for four different total
optical depths of cirrus clouds: 0.01, 0.1, 0.25, and 0.5. Boxplots illustrating the results are shown in Figure 7.

Since XCO, retrievals tend to be filtered very restrictively using the total retrieved cirrus OD (e.g., a filter thresh-
old of <0.05 as stated in Cogan et al., 2012), the cases of 0.01 and 0.1 are most relevant. For the latter case,
the standard deviation (as well as the IQR) of the errors in this subset increased roughly by a factor of 2 to 3
compared to the original scenario of 0.005. These IQRs do not exceed 0.7 ppm using 1 EOF and decrease to
0.05 ppm using 3 EOFs. Comparing these numbers to the those in Figure 6, one can see that the IQRs of the
respective distributions roughly doubled/tripled when the total cirrus OD was increased to 0.1.

The conclusion here is that high-altitude aerosols, such as cirrus clouds,
Table 2 have a similar effect on the reconstruction accuracy, and ultimately the
Land Cover Class Indices Associated With the Four Surface Types, European Space retrieval error, as aerosols in the lower troposphere in the glint obser-
Agency (2016) vation mode. The PCA-based approach performs well for cirrus optical
depths as large as 0.5 when 3 EOFs are used.

Surface type Land cover class indices

Tree cover 50, 60,61, 62,70,71,72,80,81,82,90  4.4. Varying Instrument Configuration

Bare area 200, 201,202 The XCO, error from the PCA-based method will change for different
Sparse vegetation 120,121, 122, 130, 140, 150 instruments. To evaluate how the PCA-based approach performs for
Water 220 other instruments, we perform the linear error analysis for a subset

(N =~ 5500) of scenes using different instrument models. The assumed
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instrument models are described by their spectral resolution, that is,

Table 3 . . L .

Instrument Model Characteristics; the FWHMs of the Gaussian Instrument Line the full width at half maXImur'n (FWHM) of the Gaus.SIan Ir\strumer'w line
Shape Functions Are Stated for All Three Bands (O, A Band, Weak CO,, and shape (ILS) functions, the noise model, and the dispersion relation as
Strong CO,) derived from the sampling per FWHM. A potentially different field of

view or footprint size is not taken into account. The spectral windows

Instrument ILS FWHM Sampling ratio dthe viewi . : ) h q llow f di
n viewin metri remain unchan w for a dir
GOSAT 035,025,024 (cm ) A andt e' ewing geomet es.a SO ? a u change toa' ow fora fect
. comparison between the simulations with the only difference being
A (OCO-2 like) 0.042, 0.076, 0.097 (nm) 25

B (CarbonSat like)
C (Sentinel 5 like)

0.1,0.3,0.55 (nm)
0.4,0.25,0.125 (nm)

the instrument models. The scenes themselves still correspond to spe-
cific GOSAT sounding locations found in both the summer and winter
season sets.

The subset of scenes was chosen to contain predominantly four differ-

ent surface types: tree cover, bare areas, sparse vegetation, and water. A
scene falls into one of these categories if at least 95% of the land cover class grid boxes enclosed by the GOSAT
footprint belong to one of the listed indices in Table 2. To that end, we utilize the 2008-2012 epoch of the
ESA CClI Land Cover map project (European Space Agency, 2016) at 300 m resolution.

We consider three additional instruments, all of which are grating-spectrometer types, as opposed to GOSAT
being a Fourier transform spectrometer. The first one is an OCO-2-like (Crisp et al., 2017) instrument that fea-
tures high SNR and high resolution across all three bands. The second instrument is to resemble the Earth
Explorer 8 candidate mission CarbonSat (Buchwitz et al., 2010) which has lower resolution than the first instru-
ment, especially in bands 2 and 3. Finally, the lastinstrument resembles Sentinel 5-like specifications (Ingmann
et al., 2012), with a much lower resolution in the O, A band but higher-resolving power in the strong CO,
band at 2.0 pm. The 2.0 pm band is not present in the design specifications of Sentinel 5; we have assumed
the instrument characteristics for that band from earlier studies (European Space Agency, 2011, 2012). Table 3
lists the spectral characteristics for the various instruments; the noise models are found in Appendix A7. The
SNR of instrument A is generally the highest, followed by Instrument C, GOSAT, and Instrument B.

The comparison of the estimated XCO, errors for the four instrument types is visualized in Figure 8, where
the scenes have been aggregated according to AOD bins. For these simulations we have used 3 EOFs for the
radiance reconstruction.

Instrument C exhibits systematically larger errors than instrument B for all surface types apart from ocean,
indicating that the spectral resolution in the strong CO, band is of higher relevance to the retrieval error than
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Figure 8. XCO, errors (using 3 EOFs) of scenes grouped into aerosol optical depth bins (the grey dashed lines indicate
the bin boundaries) for the four instruments listed in Table 3 (left to right, GOSAT: grey, A: blue, B: red, C: green) for
different surfaces.
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the noise levels. When only 1 EOF is used (not shown), the dependence on the AOD for all surface types and
instrument models is much higher.

From this analysis, we conclude that if 3 EOFs are used, the PCA-based approach is able to reconstruct the
radiances to an accuracy at which the forward model errors result in less than +0.2 ppm error in the retrieved
XCO, for a variety of instrument models. Using only 1 EOF will inadvertently cause biases in high-AOD scenes
on the order of 1 ppm.

4.5. Considerations Regarding the Computational Performance

A realistic assessment of the computational savings or the performance of the PCA-based fast RT method
is dependent on the employed RT model(s) but stated to be roughly between 1 and 2 orders of magnitude
(Kopparla et al., 2016).

We can make an assessment of the expected speedup by breaking down the full TOA radiance calculation
into its constituent parts. Ignoring the overhead from the PCA computations, which for this type of applica-
tion tends to be on the order of a few seconds, as well as from preparing the optical inputs for the binned
calculations, the upper limit for the speedup S for a band can be estimated by taking the ratio between the
computational times for the line-by-line and PCA RT calculations. The line-by-line durations are simply the
number of spectral points multiplied by the average time of one full calculation for a single point t,gp.
The duration for the PCA approach is the sum of the line-by-line low-accuracy runtime N,y - t,,, and the
runtime of both high- and low-accuracy binned calculations (tyigh + tiow ) * Npins * (2Ngops + 1)

_ t(line-by-line) Niot - thigh
t(PCAmethod)  Ngg * tigy + (thigh + tiow ) * Npins * @Neops + 1)

_ thigh
fiow + (thigh + tiow ) Nbins : (ZNEOFS + 1)/Ntot ’

with

thigh = Iss, high T Tms, high» (13)

tlow = tSS, low + tMS, low* (14)

N is the number of spectral points in the band, N;,, is the number of bins in the band, and N, is the
number of EOFs used for each bin. The t, represent the time it takes to compute the full (SS + MS) TOA radiance
for a single wavelength point, running in either low- or high-accuracy mode. One can further simplify the
expression above by assuming that a low-accuracy calculation of the full radiance field for any wavelength
takes a certain fraction & = t,,,, /tyign Of the time of a high-accuracy calculation:

1
S~ .
E+(1+ é)Nbins ' (ZNEOFS + 1)/Ntot

(15)

In the case of discrete ordinates solvers, the ratio & depends mostly on the number of chosen computational
quadrature angles, the total number of layers, and the number of analytical weighting functions to be calcu-
lated. In our setup, we use 19 layers and 5 profile weighting functions with 16 streams for the high-accuracy
mode; ¢ ~ 0.005 for both Lambertian and Cox-Munk surface models. The large reduction in computational
time is due to the use of a dedicated two-stream model (Spurr & Natraj, 2011) rather than just running a gen-
eral MS model with two quadrature streams. Note that & can change dramatically depending on the utilized
RT model and is about an order of magnitude smaller if polarization is taken into account (O'Dell, 2010).

An example of the speedup as a function of Ngge, and Ny, is shown in Figure 9, along with indicators of
the choices for the simulations presented earlier. The speedup for these choices ranges from about 50 up to
about 150, which falls in line with the numbers reported in Kopparla et al. (2016) and Natraj et al. (2010). The
considerations here have been made for a scenario in which the number of EOFs is the same for every bin,
and further optimization could reduce the number of binned calculations by reducing the number of EOFs
for certain bins.

Regardless of the choice of Ny, and Ngqp, equation 15 is bounded by ¢, in the limit of Ny;,, — 0, S = 1/¢.
This upper bound represents a limit for RT acceleration methods for which full line-by-line calculations using
a low-accuracy model or mode have to be performed.
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Figure 9. Speedup S for £ = 0.005 and three different values of Ny, each corresponding to the number of spectral
points for the three bands. The location of the circles signifies the number of EOFs and number of total bins (22) used
for the simulations. Black lines represent contour lines of constant S.

5. Summary

We have extended the PCA-based fast RT method introduced in Natraj et al. (2005) to account for spectrally
dependent aerosol scattering properties and applied it to GOSAT-like measurements of CO,. In order to assess
the reconstruction accuracy of TOA radiances in SWIR bands, a large set of simulations was performed, and
the approximated TOA radiances were compared to high-accuracy line-by-line calculations.

From these direct comparisons, the effect on retrieved quantities can be inferred via linear sensitivity analysis
that also takes into account the instrument noise levels. Using 2 EOFs rather than only 1 for the reconstruc-
tion increases the accuracy by roughly an order of magnitude (as indicated by Figure 4), while using 3 EOFs
does not increase the accuracy for the entire ensemble significantly but changes the spatial distribution. The
radiance residuals are below that of those reported in alternative methods when more than 1 EOF is used,
however, at the cost of more binned calculations when compared to LSl or linear-k.

To understand the estimated errors in terms of their magnitude, the XCO, errors due to the PCA approach
can be compared to other errors that make up the total error budget of a retrieval. We have shown that using
3 EOFs in the PCA approach results in XCO, errors mostly smaller than +0.06 ppm for GOSAT measurements.
Simulations using an OCO-2-like instrument model showed that the errors are mostly smaller than +0.2 ppm.
Connor et al. (2016) report in detail the errors for OCO-2-based retrievals that stem from various sources of
uncertainties, and we can therefore state that the errors due to the PCA approach are about <10% (<5%) of
the reported total (variable) error. They also report the error induced by a less-informed aerosol prior. These
errors are about 0.47 + 0.63 ppm (June/land nadir) and about 0.37 + 0.72 ppm (June/ocean glint) and are
thus in the same order of magnitude as the errors due to the PCA-based approach (1 EOF). Using only 1 EOF
for XCO, retrievals from OCO-2 measurements can significantly add to the total retrieval error.

We therefore conclude that the PCA-based method allows accurate reconstruction of TOA radiances for a large
range of parameters. The accuracy can be tuned to the application by choosing different bins and changing
the number of EOFs.

Comparing the errors to those reported for the linear-k method in Hasekamp and Butz (2008), we find that
while the errors from the PCA method generally increase with AOD, the overall scale of the errors is sub-
stantially lower than for linear-k—especially at aerosol optical depths larger than 0.5. The linear-k method,
however, does not require line-by-line low-accuracy calculations using an MS model and is thus faster than
the PCA approach.

Appendix A

A1. Atmospheric Optical Properties

We use a setup similar to earlier work (Kopparla et al.,, 2016; Natraj et al., 2005, 2010) and consider a
one-dimensional model atmosphere that is subdivided into N, optically homogeneous and plane-parallel
layers. For every spectral point i, each layer j is optically defined by the total optical depth z;; the

single-scattering albedo w, ;, and the composite phase function expansion coefficients f;; ,, where the index
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m runs from 0 to the number of expansion coefficients N,,,,,. A set of these three quantities 7, w, and g fully
define the optical properties of the model atmosphere in terms of the RT computations. Additionally, layer
boundary altitudes are defined for the application of the pseudospherical approximation in which the incom-
ing solar beam attenuation is calculated for a curved atmosphere.The total optical depth per layer can be
written as the sum of its various contributions, which in our case are due to gas and aerosol extinction, as well
as extinction due to molecular (Rayleigh) scattering:

.= T(gas) + 7/_(aer»ext)

(Ray)
ij = Tij ij M (A1)

i

Optical depths due to gas extinction are often derived from spectroscopic line lists and are explicitly calculated
from a precomputed lookup table (Benner et al., 2015; Devi et al.,, 2016; Drouin et al., 2016) for each spectral
point i. Similarly, the extinction due to Rayleigh scattering can be computed from an analytic expression that
contains the wavelength explicitly (Bucholtz, 1995).

The optical depths due to aerosol extinction, however, are not calculated explicitly for every spectral point.
We make use of the methodology in Vogel et al. (2017, private communication), for which the parts rele-
vant to the EOF method are quickly summarized here. Layer-resolved aerosol optical depths for mixture a
at a given reference wavelength (in our case at 755 nm) are derived from the global CAMS aerosol product
(http://www.gmes-atmosphere.eu/d/services/gac/nrt/nrt_opticaldepth/). The extinction and scattering
coefficients g and g are calculated for each individual aerosol type using either Mie or T-Matrix calcula-
tions. For each observation, extinction and scattering coefficients are constructed from these base properties
and calculated for two wavelengths 1029 and A" at the edges of each spectral band; for details see Vogel
et al. (2017, private communication). Since the GOSAT spectral bands are relatively narrow, the extinction,
and thus the optical depth profiles, can be reconstructed via the Angstrém exponent a, which can be

calculated as
In (q(beg)/q(end>)

= - s A2
In (ﬂ(beg)/,{(end)) (A2)

where g is either g or g at the wavelengths 1*¢9 and 1©"9, The extinction and scattering ratios for any
wavelength in that specific band can then be obtained:

A\ A\
— o(beg) I =gend [ 27
Ga=q"° </1(beg)> =q*" </1(end)) : (A3)

The same calculations also yield the phase function expansion coefficients ﬁ;?,en" ®¢9 and peciend) The expan-
sion coefficients as well as the extinction and scattering ratios are calculated for the band edges only due
to the computational effort involved. To obtain the expansion coefficients at any given wavelength, a simple

linear interpolation is used:
A, — Abeg)
=t - (A4)

G = .
' Jlend) _ j(beg)
Using equation A4, the phase function expansion coefficients for an aerosol mixture a at spectral index i are
calculated as
(aer) __ (aer, beg) (aer, end)
Bt = (1-¢) - P 4 ¢ - prerend. (A5)

im,a m

To obtain the extinction and scattering optical depth at any given wavelength, the reference profile is
multiplied by the extinction and scattering coefficients, respectively:

(aer-ext) _ _(ext) —_(aer ref)
ij.a “Hia Tj,a ’ (A6)
(aer-sca) __ _(sca) . (aer ,ref)
ij,.a - qi,a Tj,a ’ (A7)

where the partial contributions due to each aerosol mixture a are summed up to obtain the total aerosol
optical depth due to extinction and scattering in any given layer:

Na
(aer-ext) __ (aer-ext)
Tij =2 Tija (A8)
a=1
NU
(aer-sca) __ (aer-sca)
7 = E Tiia - (A9)

a=1
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The total composite phase function expansion coefficients are composed according to the fraction of scat-
tering that each aerosol mixture contributes compared to the total scattering including molecular Rayleigh
scattering:

(Ray) (Ray) (aer-sca) | aer)
ﬂl! m z a 0o I m.a
ﬁi’j’m = (Ray) (aer-sca) (A10)

Ti»f +1i,j

The single-scattering albedos w;; are calculated using the aerosol scattering coefficient q(sca)

(Ray) + Z q(sca) (aer ref)
(AT11)

w:: =
iy
i

Despite the used RT models being blind to the partial contributions, these contributions due to each mixture
need to be retained for the reconstruction of the binned optical properties.

A2. Preparing the Optical Properties

For every bin containing N, spectral points, an N, X N, matrix O is constructed which contains a total
of N, layer-resolved, bulk or auxiliary optical properties. We consider auxiliary optical properties to be
wavelength-dependent quantities which, while not directly used in RT computations, are used to derive such
quantities. An example would be the aerosol interpolation fraction ¢; (equation (A4)). All properties may be
transformed using a suitable function beforehand, which we denote as f, and f(0) = F. This function f*
should have aninverse f8 = (fF) that transforms the quantity back into its original space, such that f8(F) = O
Previous work (Kopparla et al., 2016; Natraj et al., 2005, 2010; Spurr et al., 2013) chose fF to be the natural log-
arithm in order to compress the range of gas optical depths, which results in less PCs needed to capture the
same amount of variability. In general, f¥ can be any bijective function ff : X — Y, as long as the optical prop-
erties are elements of X. Different functions could be applied to each type of optical property. Similar to Natraj
et al. (2005, 2010) and Kopparla et al. (2016), we construct O using the total gas optical depth profiles T(gas)
However, instead of adding the single-scattering albedos w; ;, we use the optical depth due to Rayleigh scat—
tering rl.(;ay). The advantage of this choice is a better reconstruction of the single-scattering albedos as well as
aerosol properties, which will be explained in more detail in section A5. To account for wavelength-dependent
scattering properties of aerosols, the aerosol scattering coefficient q(sca) (see equation (A3)) for each aerosol
type isincluded. Additionally, we add the aerosol interpolation coefficients ¢; (see equation (A4)). Finally, simi-
lar to Spurr et al. (2013), we also add the Lambertian surface albedos p; as a bulk property. For different surface
models, the surface albedo should be replaced or extended by any number of other spectrally dependent
parameters. For the ocean glint Cox-Munk kernel (Cox & Munk, 1954), this parameter would be the relative
refractive index of water to air m;. The order of all of the mentioned quantities in the matrix O (the column
position) is arbitrary as long as the same position of each quantity is used during the reconstruction.

Summarizing, the matrix F = fF(0) is written as in equation A12, where the tilde over any property signifies
that it has been transformed via the function f*, that is, f7(x) = X. Thus, the total number of columns in F is
N, =2N,+ N, + 2.

~ ~ ~(Ray) ~(Ray) ~(sca) ~(sca) ~ =~
Tiq - Ty, TH 1Nl q1 PR q1 Ny P G
F= oo oo oo EE N B (A12)
~ ~ ~(Ray) ~(Ray) ~(sca) ~(sca) ~
et o NN T o Ty Angt oo G, PN Cy,

Note that contrary to the other properties, ¢; can be negative, in which case the transformation into loga-
rithmic space would fail. In this work, we use f(x) = In(x) for all elements; however, a constant value of 5
was added to every ¢; to avoid the aforementioned issue. This constant value is then subtracted again when
calculating the binned optical properties in section A2.

A3. Varying Scattering Properties and Generalization of the Method

An important note shall be made here to the reader. The specific preparation of the aerosol optical prop-
erties, described in section A2, is not an integral part of the PCA-based approach itself. In this work, it was
chosen to comply with the calculations within the UoL retrieval scheme. For applications in which the varying
extinction and scattering properties of aerosols are ignored, the quantities &<, g9, and ¢ can be omit-
ted in equation (A12). In this case, there is no need to reconstruct the phase function expansion coefficients,
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since they are the same for each spectral point. Similarly, if the optical properties depend on additional quan-
tities not mentioned here, then these quantities must be incorporated in O in the same way. If the coefficients
are not parameterized or interpolated in a similar way as shown here, but rather calculated individually for
every wavelength, then the EOF method would need to be reviewed, as the decomposition in the following
section potentially proves difficult if N, is of the order of several hundred. On the other hand, for applica-
tions in which N, is considerably smaller, it is conceivable to directly ingest them into the optical property
matrix O, thus allowing for a direct reconstruction of j; ,, without any auxiliary parameters.

Neglecting the wavelength dependence of the scattering properties, if it is part of the (forward) model, will
ultimately lead to an overall slope (with wavelength) in the residuals, as seen in Natraj et al. (2005). Contrary to
other approaches, such as in O'Dell (2010), no further RT computations are needed to correct for the varying
scattering properties. The method can potentially be generalized for other RT models. LIDORT (Spurr, 2008),
2S-ESS (Spurr & Natraj, 2011), and 20S (Natraj & Spurr, 2007) are models that ingest total atmospheric optical
properties (7, w, f). Therefore, O is set up such that it contains all quantities to exactly calculate the inputs
needed by the RT models; no information loss has occurred yet.

It was demonstrated in Efremenko et al. (2014) that the PCA approach can be generalized to other dimen-
sionality reduction techniques, such as local linear embedding methods or discrete linear transforms. They
showed for a single example that higher accuracies can potentially be achieved by employing, for example,
local linear embedding rather than PCA. As such there is the potential of improving on the results shown in
this paper.

AA4. Calculation of the Empirical Orthogonal Functions
The principal components are calculated based on the mean-removed covariance matrix C, which is con-
structed by first subtracting the spectral mean of each optical property from F, such that

NS
= 1

Fu=Fi=w > Fu (A13)

s =1

The covariance matrix C is then given by
1 (TT=

c= (FFF). A4
N1 (A14)

Note the normalization factor in equation (A14), which was not present in earlier publications. We solve the
eigenproblem for the N, x N, matrix C:

CV, =nV,, (A15)

with eigenvalues 7, that correspond to eigenvectors V,. The eigenvectors V, also called empirical orthogonal
functions (EOFs), are scaled via the square root of their corresponding eigenvalues,

W, = /m V. (A16)
and the PCs P are obtained by projecting F onto the EOFs:

Po= LFW,. (A17)

M
In practice, since Cis real and symmetric, we can use the LAPACK solver DSYEV or appropriate wrappers, such
asNumPy's eigh (van der Walt et al,, 2011), to compute all V, and 7. In terms of efficiency, the LAPACK routine
is able to solve the eigenproblem for a 200 x 200 matrix in less than a second (Anderson et al., 1992); we can,
therefore, neglect its impact on the overall computational effort.

The 7, are subsequently ranked by decreasing values, such that V, is the EOF that explains the largest amount
of variability of F. Generally, we find that the cumulative explained variance for the first three EOFs tends to
be >99%. As stated in Natraj et al. (2005), this implies that three to four EOFs are sufficient to reconstruct the
optical properties for every spectral point in the bin to high accuracy.

Due to the symmetry of C, all Eigenvalues are positive and real. Eigensolvers such as the aforementioned
DSYEV, however, might return some very small negative Eigenvalues for larger k. Since the magnitude
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of these eigenvalues is small and their contribution can be neglected, we set all eigenvalues and thus all
corresponding scaled and unscaled eigenvectors and PCs to zero if % is sufficiently small:

Iml <107° =P, =W, =V, =n =0, Vil (A18)

The eigenvalues satisfying the above condition are usually of high order, such that they would not have been
relevant at all for the reconstruction, which is often done using less than ~10 principal components.

A5. Preparation of Binned Optical Properties
For every bin, a so-called mean optical state, 0¥ is created by transforming the spectrally averaged F back
into its original space:

0° = ( Z F,,) (A19)

Constructing the total optical depths for the mean state is straight forward, since r O(O) with/ =1...N,
(see equation (A12). The other mean properties, such as mean surface albedo, mean Raylelgh optical depth,
and the mean auxiliary properties @ and g&®-?, are obtained analogously. The single-scattering albedos

', however, are a composite quantity in terms of the contents of O, and they have to be calculated from

(Ray ,0) (sca ,0) (

), T and the mean aerosol scattering coefficient g, see equation (A11):

j
(Ray .0) (sca ,0) (aer ,755)
T+ Z da L

0 _ a=1
o = o . (A20)

J

The final quantities needed for the binned calculations are the composite phase function expansion coeffi-
cients /3( ) As explained in section A2, the phase function expansion coefficients related to aerosols ﬁ(ae') are
con5|dered to be wavelength dependent and are calculated for two points near the edges of the spectral band.
Through linear interpolation between the given points, the coefficients are obtained for every spectral point
in the band. For the mean optical state, we use the mean interpolation factor ¢ to calculate the f@ % via

j.m.a

Bloer % = BP0 (1= ) 4 glaenend. (O, (A21)

j:m.a j:ma

The mean composite phase function expansion coefficients can then be calculated as follows:

(Ray ,0) (Ra: ) (aer 0) sca ,0 (aer ,755)
T y.0) | ﬁm,‘y Z ﬂ ( ) .7

© j J.m,a aj
ﬂj.m = (Ray ,0) (sca ,0) (aer ,755) ! (A22)
g +4, Taj

With that, the total mean optical state is fully defined. The binned optical quantities for the perturbed states
+k and —k are computed by perturbing the mean optical properties by the scaled EOFs W:

Of+k) <{ ZF:/] + Wkl> (A23)
5 i=1

From O(+k) the perturbed properties, T(+k) ](Ray gl 5k, and c#k), are obtained as before, and the

composite quantities a)(+k) and /3(+k) are calculated analogously to equations (A20)-(A22).

A6. Binned Calculations and Intensity Reconstruction

For each bin, 2N + 1 low-stream and high-stream calculations are performed using LIDORT (/,), 2S-ESS (/,5)
and FO (Ir,) and the optical inputs 0 and 0= that were prepared in section A2. Further optimization can
be achieved by choosing the number of EOFs individually for each bin, which could reduce the total number
of binned calculations.

We use the notation in Spurr et al. (2013) and define the differences between high- and low-stream binned
calculations in logarithmic space as

115(09) + 15(0)

JO = [T
1rs(0©) + [ro(0©)

(A24)
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and
Table A1 (k) k)
Instrument Model Coefficients S hp(0™") + Iro(0™7) (A25)
1, (0K + [ Ok
Coefficient O, Aband Weak CO, Strong CO, 2s( )+ Iro )
Instrument A (OCO-2 like) for the mean and perturbed optical states, respectively. Still in logarith-
a 4.9x10%7 6.0025 x 1036 1.5625 x 103¢  mic space, the second-order central difference expansion is then applied,
b 7.0x 1018 2.45 % 1018 1.25% 1018 where the PCs transform the result back into the spectral space:
Crret 0.00497 0.00671 0.0149 C = expU) (A26)
Cph 0.00961 0.00706 0.008
with
Instrument B (CarbonSat like)
Neor k Kk Neor k 0 —k
SNR o 150 160 130 P Z Sk _ [ )P . Z JHO _ 240 4 g )Pz.. (A27)
(- 4.2% 10" 1.5x 10 3.8%10'8 ’ P 2 N 2 ki
Instrument C (Sentinel 5 like)
SNR,o¢ 500 300 100 The correction factors C; are then used to reconstruct the approximate
Lo © 126 T 1 5 e e radiance for each spectral point:
- ' . d

Note. Radiances (L, Lyf) in ph/s/m?/st/pum, Cpacks Cohs and SNR ¢ are unitless;

Lapproxi = [IFO,i + IZS,i] -G (A28)

ain (ph/s/m2/sr/um)? and b in ph/s/m?/sr/um.

Here we correct for the entire radiance field, which is referred to as the 3
M mode, rather than correcting the MS field only (2 M mode).

A7. Instrument Noise Models

For section 4.4, we use various noise models to simulate different instruments in order to assess the impact of
noise and spectral resolution on the reconstruction accuracy. The noise model for instrument A (OCO-2 like)
is a simplified version of the one stated in Eldering et al. (2015):

LZ
SNR, = ‘/—, (A29)
aCZ,, +bCL

with L being the radiance value in units of ph/s/m?/sr/pm. While in Eldering et al. (2015), the coefficients Cp
and C,, are detector pixel dependent, we have substituted them with a constant value for each band. Similarly,
for the CarbonSat-like instrument B, we use the following noise model (Buchwitz et al., 2010),

SNRref : LL
SNRg = V3 ———= (A30)

2+
Lref

Finally, instrument C was modeled after Sentinel-5-like specifications, with the noise model

SNR¢ = SNR (1 /ﬁ. (A31)
re

The coefficients used in the above noise models are summarized in Table A1.

Acronyms

AOD Aerosol optical depth
CAMS Copernicus Atmosphere Monitoring Service
ECMWF European Centre for Medium-Range Weather Forecasts
EOF Empirical orthogonal function
GOSAT Greenhouse Gases Observing Satellite
IQR Interquartile range
LSI Low-streams interpolation
OD Optical depth
PC Principal component
PCA Principal component analysis
RMS Root-mean-square
SNR Signal-to-noise ratio

SOMKUTI ET AL.

PCA-BASED FAST RT FOR XCO, RETRIEVALS 10,494



@AG U Journal of Geophysical Research: Atmospheres

10.1002/2017JD027013

Acknowledgments

P. Somkuti is funded by the ESA
Greenhouse Gas Climate Change
Initiative (GHG-CCI) as part of a PhD
studentship. H. Boesch receives fund-
ing by the UK National Centre for
Earth Observation (NCEO) as well as
GHG-CCI. V. Natraj was supported

by the Orbiting Carbon Observatory
(OCO-2) Project at the Jet Propul-
sion Laboratory, California Institute of
Technology. P. Kopparla was supported
in part by the NASA NNX13AK34G
grant to the California Institute of
Technology and the OCO-2 Project

at the Jet Propulsion Laboratory.

We thank the Japanese Aerospace
Exploration Agency, National Institute
for Environmental Studies, and the
Ministry of Environment for the GOSAT
data and their continuous support as
part of the Joint Research Agreement.
GOSAT L1B data are available from
the GOSAT data archive service
(GDAS, https://data2.gosat.nies.go.jp/
index_en.html). ECMWF ERA-Interim
data are available through the ECMWF
website (http://apps.ecmwf.int/
datasets/). THE ESA-CCI land

cover classification data can

be obtained from https://www.
esa-landcover-cci.org/. The radiance
residuals as well as the associated
XCO, errors are available as HDF5
files from http://www.leos.le.ac.uk/
data/GHG/GOSAT/pca_method/. The
authors would like to thank R. Parker
for helpful comments and editing, as
well as L. Vogel for assistance regard-
ing the aerosol scheme. We thank
the two anonymous reviewers as well
as the editor for their feedback and
helping to improve the quality of this
publication. This research used the
ALICE/SPECTRE High Performance
Computing Facility at the University of
Leicester.

SZA Solar zenith angle
TOA Top-of-the-atmosphere

Notation

i Spectralindex (1...N;).
j Layerindex (1...N)).
a Aerosol mixture index (1... N,).

m Phase function expansion coefficientindex (1 ... Ny,om)-

I Free index within optical property matrix For O (1... N,).

k EOF, eigenvalue or principal component index. Since the decomposition is based on the covari-
ance matrix C with dimension N, x N,, this index can vary between 1...N,. For the approximation,
in, for example Equation (A27), the index varies between 1 and the number of EOFs used for the
reconstruction, Ngqp.
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