930 research outputs found
Evaluation of high-voltage circuit breaker performance with a validated arc model
A digital current-zero measuring system was used to monitor about 200 zero crossings of short-line fault currents in three designs of commercial high-voltage circuit breakers. The breakers were subjected to standard IEC 60056 tests in a high-power laboratory. With these results, an empirical arc model was derived, based on the series connection of three classical modified Mayr models. It was found that only three `free' parameters, extracted from the arc voltage and current during the pre-zero period can describe the state of the breaker after each test. With this model, the margin of the interrupting capability could be directly obtained. A strong relation between this margin and the arc conductivity at current zero can be established. Independent of arcing time, arcing current and state of the breaker, it was found that the current zero conductivity must decrease to 1-2 ms (only depending on the design of the breaker) to make a successful interruption possibl
Design improvement of a 245-kV SF6 circuit breaker with double-speed mechanism through current zero analysis
This paper presents the results of current zero measurements during short-line fault interruption tests performed on three variants of an SF6 circuit breaker (CB) (245 kV, 40 kA) with a new mechanism for increasing the contact motion speed, shortly named double-speed mechanism, in order to distinguish between double-motion systems where both contacts are moving. The application of a double-speed mechanism provides the necessary increase of contact separation speed, without a significant increase of opening energy. Besides that, it does not requires any fixed mechanical connection between the stationary and moving contacts through the nozzle. This feature has a positive impact on the CB reliability and creates the possibility of easier assembly and dismantling of the interrupter from its insulator. High-resolution measurements of near current-zero arc current and voltage were carried out during these tests. Different levels of information on the "quality of interruption," obtained from current zero measurements are presented. Direct observation of arc current and arc voltage data are analyzed. The arc conductivity very shortly (500 and 200 ns) before current zero, as an indicator of the performance of the breaker under test is discussed. All information obtained during current zero measurement is in correlation with the direct results of testing and with design improvements in successive variants of the CB
A Meta-Brokering Framework for Science Gateways
Recently scientific communities produce a growing number of computation-intensive applications, which calls for the interoperation of distributed infrastructures including Clouds, Grids and private clusters. The European SHIWA and ER-flow projects have enabled the combination of heterogeneous scientific workflows, and their execution in a large-scale system consisting of multiple Distributed Computing Infrastructures. One of the resource management challenges of these projects is called parameter study job scheduling. A parameter study job of a workflow generally has a large number of input files to be consumed by independent job instances. In this paper we propose a meta-brokering framework for science gateways to support the execution of such workflows. In order to cope with the high uncertainty and unpredictable load of the utilized distributed infrastructures, we introduce the so called resource priority services. These tools are capable of determining and dynamically updating priorities of the available infrastructures to be selected for job instances. Our evaluations show that this approach implies an efficient distribution of job instances among the available computing resources resulting in shorter makespan for parameter study workflows
Probability distribution of residence-times of grains in sandpile models
We show that the probability distribution of the residence-times of sand
grains in sandpile models, in the scaling limit, can be expressed in terms of
the survival probability of a single diffusing particle in a medium with
absorbing boundaries and space-dependent jump rates. The scaling function for
the probability distribution of residence times is non-universal, and depends
on the probability distribution according to which grains are added at
different sites. We determine this function exactly for the 1-dimensional
sandpile when grains are added randomly only at the ends. For sandpiles with
grains are added everywhere with equal probability, in any dimension and of
arbitrary shape, we prove that, in the scaling limit, the probability that the
residence time greater than t is exp(-t/M), where M is the average mass of the
pile in the steady state. We also study finite-size corrections to this
function.Comment: 8 pages, 5 figures, extra file delete
Distributed Environment for Efficient Virtual Machine Image Management in Federated Cloud Architectures
The use of Virtual Machines (VM) in Cloud computing provides various benefits in the overall software engineering lifecycle. These include efficient elasticity mechanisms resulting in higher resource utilization and lower operational costs. VM as software artifacts are created using provider-specific templates, called VM images (VMI), and are stored in proprietary or public repositories for further use. However, some technology specific choices can limit the interoperability among various Cloud providers and bundle the VMIs with nonessential or redundant software packages, leading to increased storage size, prolonged VMI delivery, stagnant VMI instantiation and ultimately vendor lock-in. To address these challenges, we present a set of novel functionalities and design approaches for efficient operation of distributed VMI repositories, specifically tailored for enabling: (i) simplified creation of lightweight and size optimized VMIs tuned for specific application requirements; (ii) multi-objective VMI repository optimization; and (iii) efficient reasoning mechanism to help optimizing complex VMI operations. The evaluation results confirm that the presented approaches can enable VMI size reduction by up to 55%, while trimming the image creation time by 66%. Furthermore, the repository optimization algorithms, can reduce the VMI delivery time by up to 51% and cut down the storage expenses by 3%. Moreover, by implementing replication strategies, the optimization algorithms can increase the system reliability by 74%
Herding model and 1/f noise
We provide evidence that for some values of the parameters a simple agent
based model, describing herding behavior, yields signals with 1/f power
spectral density. We derive a non-linear stochastic differential equation for
the ratio of number of agents and show, that it has the form proposed earlier
for modeling of 1/f^beta noise with different exponents beta. The non-linear
terms in the transition probabilities, quantifying the herding behavior, are
crucial to the appearance of 1/f noise. Thus, the herding dynamics can be seen
as a microscopic explanation of the proposed non-linear stochastic differential
equations generating signals with 1/f^beta spectrum. We also consider the
possible feedback of macroscopic state on microscopic transition probabilities
strengthening the non-linearity of equations and providing more opportunities
in the modeling of processes exhibiting power-law statistics
Quasi-static cracks and minimal energy surfaces
We compare the roughness of minimal energy(ME) surfaces and scalar
``quasi-static'' fracture surfaces(SQF). Two dimensional ME and SQF surfaces
have the same roughness scaling, w sim L^zeta (L is system size) with zeta =
2/3. The 3-d ME and SQF results at strong disorder are consistent with the
random-bond Ising exponent zeta (d >= 3) approx 0.21(5-d) (d is bulk
dimension). However 3-d SQF surfaces are rougher than ME ones due to a larger
prefactor. ME surfaces undergo a ``weakly rough'' to ``algebraically rough''
transition in 3-d, suggesting a similar behavior in fracture.Comment: 7 pages, aps.sty-latex, 7 figure
Mounding Instability and Incoherent Surface Kinetics
Mounding instability in a conserved growth from vapor is analysed within the
framework of adatom kinetics on the growing surface. The analysis shows that
depending on the local structure on the surface, kinetics of adatoms may vary,
leading to disjoint regions in the sense of a continuum description. This is
manifested particularly under the conditions of instability. Mounds grow on
these disjoint regions and their lateral growth is governed by the flux of
adatoms hopping across the steps in the downward direction. Asymptotically
ln(t) dependence is expected in 1+1- dimensions. Simulation results confirm the
prediction. Growth in 2+1- dimensions is also discussed.Comment: 4 pages, 4 figure
- …