247 research outputs found

    Technical design of complex vision-tactile navigation system for using of blind persons navigation

    Get PDF
    ArticleThis article presents the system used for navigation and orientation of blind persons in an unknown terrain. This system called ‘ Tactile Navigation System ’ constitutes a compensation instrument for blind persons. It is composed from three basic elements: a camera, a control unit and a tactile activator. The tactile navigation system converts the image from the camera to the tactile information and it transfers this information to the blind person. The blind person can recognize by vibration of the tactile a ctivator placed on the antebrachium whether he comes on an impediment or if he can continue free walking. The main advantage of this system is the possibility of detecting any individual impediment earlier than using other common compensation tools, such a s a simple blind stick, which is not a competitor with this device, but a helper. This way the system facilitates the orientation of a blind person an in an unknown terrain. The article describes in detail the overall composition and functionality of the s ystem as well as the principle and funct ion of its individual elements

    Verification of mathematical model of pressure distribution in artificial knee joint

    Get PDF
    ArticleThe paper deals with pressure distribution measurement in knee arthroplasty, which is an artificial replacement of human knee joint. The scope of the article is to verify the accuracy of a mathematical model by real measurements. The calculated pressure values basing on the mathematical model are compared with actually measured pressure values in the contact area of the joint. Hereby maximal load the in the contact area, the distribution of the pressure and any potentially dangerous pressure deviations during the walk cycle are checked. To enable accurate pressure distribution measurement without interfering into human’s body, a sophisticated measuring setup was created: the contact area of the joint was equipped with several pressure sensors and a machine simulating the human walk cycle was used. The measured pressure data are finally compared with those from the mathematical model and with the strength limit of the used material, to verify the accuracy of the mathematical model experimentally

    Plantograf V18 – new construction and properties

    Get PDF
    ArticleThe article describes Plantograf V18, a planar tactile transducer, which converts the applied pressure into electric signal and enables a graphical presentation of the measured data; the new version V18 comes with some significant improvements and modifications. The device may be used ev erywhere where the pressure distribution between an object and surface is to be determined, e.g. in medicine or automotive industry. The article contains the detailed description of the transducer design and its electronic control circuits, as well as the yet unpublished measurements of pressure sensitivity with 3.5 mm electrodes

    Nanoporous monolithic microsphere arrays have anti-adhesive properties independent of humidity

    Full text link
    Bioinspired artificial surfaces with tailored adhesive properties have attracted significant interest. While fibrillar adhesive pads mimicking gecko feet are optimized for strong reversible adhesion, monolithic microsphere arrays mimicking the slippery zone of the pitchers of carnivorous plants of the genus Nepenthes show anti-adhesive properties even against tacky counterpart surfaces. In contrast to the influence of topography, the influence of relative humidity (RH) on adhesion has been widely neglected. Some previous works deal with the influence of RH on the adhesive performance of fibrillar adhesive pads. Commonly, humidity-induced softening of the fibrils enhances adhesion. However, little is known on the influence of RH on solid anti-adhesive surfaces. We prepared polymeric nanoporous monolithic microsphere arrays (NMMAs) with microsphere diameters of a few 10 {\mu}m to test their anti-adhesive properties at RHs of 2 % and 90 %. Despite the presence of continuous nanopore systems through which the inner nanopore walls were accessible to humid air, the topography-induced anti-adhesive properties of NMMAs on tacky counterpart surfaces were retained even at RH = 90 %. This RH-independent robustness of the anti-adhesive properties of NMMAs significantly contrasts the adhesion enhancement by humidity-induced softening on nanoporous fibrillar adhesive pads made of the same material
    • …
    corecore