1,325 research outputs found
Bedre nytteverdi av blodkultur ved sepsis
Tema/problemstilling: Vårt kvalitetsforbedringsprosjekt er rettet mot behandling av pasienter med sepsis ved en indremedisinsk avdeling. Målet er å øke nytteverdien av blodkultur for å redusere bredspektret antibiotikabehandling.
Kunnskapsgrunnlag: Det er sammenheng mellom bruk av bredspektrede
antibiotika og resistensutvikling. Deeskalering, endring av antibiotikabehandlingen til et mer smalspektret regime etter blodkultursvar, er en strategi for å redusere bruk av
bredspektrede antibiotika. Deeskalering hos sepsispasienter der blodkultursvaret med resistensbestemmelse tillater det er trygg praksis og anbefales i nasjonale retningslinjer for antibiotikabehandling i sykehus.
Tiltak/kvalitetsindikator: Samtaler med leger på Diakonhjemmet og Ullevål sykehus bekrefter at flere pasienter blir stående unødvendig på bredspektret antibiotikabehandling etter at man har blodkultursvar, og at det kan være potensial
for å sette i gang forbedringstiltak. Vi innfører et tiltak som sikrer direkte kontakt mellom mikrobiolog og aktuell kliniker. Vi har valgt indikatorer for å vurdere i hvor stor grad tiltak gjennomføres og positive og negative effekter av tiltaket.
Ledelse/organisering: Vi har brukt PUKK-sirkelen og Kotters åtte punkter som verktøy for å strukturere prosjektperioden. Slik kan vi sette fokus på de delene av prosjektet som trenger ekstra oppmerksomhet. Vi vil forankre prosjektet i ledelsen gjennom god informasjon og forankring i sykehusets strategiplan. For å oppnå varig
endring i praksis, vil vi blant annet gjennomføre halvårlige målinger etter at prosjektperioden er avsluttet.
Konklusjon: Tiltaket vi foreslår bygger på allerede gjeldende systemer og vil kreve lite opplæring og ressurser. Effekten er lett målbar. Kunnskapsgrunnlaget viser også at intervensjoner for formidling av dyrkningssvar ved sepsis kan redusere bruken av
bredspektret antibiotika uten skadelige bieffekter. Med bakgrunn i dette vil vi anbefale at tiltaket gjennomføres
Measurements of Anisotropy in the Cosmic Microwave Background Radiation at 0.5 Degree Angular Scales Near the Star Gamma Ursae Minoris
We present results from a four frequency observation of a 6 x 0.6 degree
strip of the sky centered near the star Gamma Ursae Minoris during the fourth
flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observation was
made with a 1.4 degree peak-to-peak sinusoidal chop in all bands. The FWHM beam
sizes were 0.55 +/- 0.05 degrees at 3.5 cm-1 and 0.75 +/-0.05 degrees at 6, 9,
and 14 cm-1. During this observation significant correlated structure was
observed at 3.5, 6 and 9 cm-1 with amplitudes similar to those observed in the
GUM region during the second and third flights of MAX. The frequency spectrum
is consistent with CMB and inconsistent with thermal emission from interstellar
dust. The extrapolated amplitudes of synchrotron and free-free emission are too
small to account for the amplitude of the observed structure. If all of the
structure is attributed to CMB anisotropy with a Gaussian autocorrelation
function and a coherence angle of 25', then the most probable values of
DeltaT/TCMB in the 3.5, 6, and 9 cm-1 bands are 4.3 (+2.7, -1.6) x 10-5, 2.8
(+4.3, -1.1) x 10-5, and 3.5 (+3.0, -1.6) x 10-5 (95% confidence upper and
lower limits), respectively.Comment: 16 pages, postscrip
Measurements of Anisotropy in the Cosmic Microwave Background Radiation at Degree Angular Scales Near the Stars Sigma Hercules and Iota Draconis
We present results from two four-frequency observations centered near the
stars Sigma Hercules and Iota Draconis during the fourth flight of the
Millimeter-wave Anisotropy eXperiment (MAX). The observations were made of 6 x
0.6-degree strips of the sky with 1.4-degree peak to peak sinusoidal chop in
all bands. The FWHM beam sizes were 0.55+/-0.05 degrees at 3.5 cm-1 and a
0.75+/-0.05 degrees at 6, 9, and 14 cm-1. Significant correlated structures
were observed at 3.5, 6 and 9 cm-1. The spectra of these signals are
inconsistent with thermal emission from known interstellar dust populations.
The extrapolated amplitudes of synchrotron and free-free emission are too small
to account for the amplitude of the observed structures. If the observed
structures are attributed to CMB anisotropy with a Gaussian autocorrelation
function and a coherence angle of 25', then the most probable values are
DT/TCMB = (3.1 +1.7-1.3) x 10^-5 for the Sigma Hercules scan, and DT/TCMB =
(3.3 +/- 1.1) x 10^-5 for the Iota Draconis scan (95% confidence upper and
lower limits). Finally a comparison of all six MAX scans is presented.Comment: 13 pages, postscript file, 2 figure
Over half of the far-infrared background light comes from galaxies at z >= 1.2
Submillimetre surveys during the past decade have discovered a population of
luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 <= z
<= 4, these massive submillimetre galaxies go through a phase characterized by
optically obscured star formation at rates several hundred times that in the
local Universe. Half of the starlight from this highly energetic process is
absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K
with spectral energy distributions peaking at 100 microns in the rest frame. At
1 <= z <= 4, the peak is redshifted to wavelengths between 200 and 500 microns.
The cumulative effect of these galaxies is to yield extragalactic optical and
far-infrared backgrounds with approximately equal energy densities. Since the
initial detection of the far-infrared background (FIRB), higher-resolution
experiments have sought to decompose this integrated radiation into the
contributions from individual galaxies. Here we report the results of an
extragalactic survey at 250, 350 and 500 microns. Combining our results at 500
microns with those at 24 microns, we determine that all of the FIRB comes from
individual galaxies, with galaxies at z >= 1.2 accounting for 70 per cent of
it. As expected, at the longest wavelengths the signal is dominated by
ultraluminous galaxies at z > 1.Comment: Accepted to Nature. Maps available at http://blastexperiment.info
BLAST Observations of the South Ecliptic Pole field: Number Counts and Source Catalogs
We present results from a survey carried out by the Balloon-borne Large
Aperture Submillimeter Telescope (BLAST) on a 9 deg^2 field near the South
Ecliptic Pole at 250, 350 and 500 {\mu}m. The median 1{\sigma} depths of the
maps are 36.0, 26.4 and 18.4 mJy, respectively. We apply a statistical method
to estimate submillimeter galaxy number counts and find that they are in
agreement with other measurements made with the same instrument and with the
more recent results from Herschel/SPIRE. Thanks to the large field observed,
the new measurements give additional constraints on the bright end of the
counts. We identify 132, 89 and 61 sources with S/N>4 at 250, 350, 500 {\mu}m,
respectively and provide a multi-wavelength combined catalog of 232 sources
with a significance >4{\sigma} in at least one BLAST band. The new BLAST maps
and catalogs are available publicly at http://blastexperiment.info.Comment: 25 pages, 6 figures, 4 tables, Accepted by ApJS. Maps and catalogs
available at http://blastexperiment.info
SANEPIC: A Map-Making Method for Timestream Data From Large Arrays
We describe a map-making method which we have developed for the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST) experiment, but which should
have general application to data from other submillimeter arrays. Our method
uses a Maximum Likelihood based approach, with several approximations, which
allows images to be constructed using large amounts of data with fairly modest
computer memory and processing requirements. This new approach, Signal And
Noise Estimation Procedure Including Correlations (SANEPIC), builds upon
several previous methods, but focuses specifically on the regime where there is
a large number of detectors sampling the same map of the sky, and explicitly
allowing for the the possibility of strong correlations between the detector
timestreams. We provide real and simulated examples of how well this method
performs compared with more simplistic map-makers based on filtering. We
discuss two separate implementations of SANEPIC: a brute-force approach, in
which the inverse pixel-pixel covariance matrix is computed; and an iterative
approach, which is much more efficient for large maps. SANEPIC has been
successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related
results available at http://blastexperiment.info/ [the BLAST Webpage
BLAST05: Power Spectra of Bright Galactic Cirrus at Submillimeter Wavelengths
We report multi-wavelength power spectra of diffuse Galactic dust emission
from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields
in Cygnus X and Aquila. These submillimeter power spectra statistically
quantify the self-similar structure observable over a broad range of scales and
can be used to assess the cirrus noise which limits the detection of faint
point sources. The advent of submillimeter surveys with the Herschel Space
Observatory makes the wavelength dependence a matter of interest. We show that
the observed relative amplitudes of the power spectra can be related through a
spectral energy distribution (SED). Fitting a simple modified black body to
this SED, we find the dust temperature in Cygnus X to be 19.9 +/- 1.3 K and in
the Aquila region 16.9 +/- 0.7 K. Our empirical estimates provide important new
insight into the substantial cirrus noise that will be encountered in
forthcoming observations.Comment: Submitted to the Astrophysical Journal. Maps and other data are
available at http://blastexperiment.info
- …
