30 research outputs found

    Peptide Co-Agonists for Combined Activation of the APJ and GLP-1 Receptors with Insulinotropic and Satiety Actions Show Potential for Alleviation of Metabolic Dysfunction in Type 2 Diabetes

    Get PDF
    Stable analogues of the adipokine apelin-13 have shown promising therapeutic potential via APJ receptor activation in isolated β-cells and in animal models of obesity-related diabetes.Incretin mimetics such as exenatide that bind to GLP-1 receptors are well-established Type 2 diabetes treatment options. We developed novel hybrid co-agonist peptide analogues incorporating both exendin-4(1-30) covalently linked to apelin (ELA). The dose-dependent (10−12 to 10−6 M) actions of ELA and component peptides were tested on acute (20 min) insulin secretion from cultured pancreatic BRIN-BD11 β-cells at 5.6 mmol/L glucose. In addition, separate tests were performed in the presence or absence of specific APJ and GLP-1 receptor antagonists. The co-agonist ELA peptide showed markedly greater insulinotropic actions (1.6 to 3.3-fold) than equimolar concentrations of either component peptide alone or in combination (p < 0.001). ELA and related acylated analogues (25 nmol/kg i.p. injection) were also tested on cumulative food intake in trained 21 h-fasted adult mice (n = 8), with food intake measured at 30 min intervals up to 180 min. The ELA co-agonist peptides significantly reduced food intake (3.1-fold by 180 min) in mice (p < 0.001) versus saline treated controls. ELA peptides showed marked improvements in both insulin secretion and appetite control, raising interest in their therapeutic potentia

    Exendin-4 stimulates autophagy in pancreatic β-cells via the RAPGEF/EPAC-Ca PPP3/calcineurin-TFEB axis

    Get PDF
    Macroautophagy/autophagy is critical for the regulation of pancreatic β-cell mass and its deregulation has been implicated in the pathogenesis of type 2 diabetes (T2D). We have previously shown that treatment of pancreatic β-cells with the GLP1R (glucagon like peptide 1 receptor) agonist exendin-4 stimulates autophagic flux in a setting of chronic nutrient excess. The aim of this study was to identify the underlying pathways contributing to enhanced autophagic flux.Pancreatic β-cells (INS-1E),mouse and human islets were treated with glucolipotoxic stress (0.5 mM palmitate and 25 mM glucose) in the presence of exendin-4. Consistent with our previous work, exendin-4 stimulated autophagic flux. Using chemical inhibitors and siRNA knockdown, we identified RAPGEF4/EPAC2 (Rap guanine nucleotide exchange factor 4) and downstream calcium signaling to be essential for regulation of autophagic flux by exendin-4. This pathway was independent of AMPK and MTOR signaling. Further analysis identified PPP3/calcineurin and its downstream regulator TFEB (transcription factor EB) as key proteins mediating exendin-4 induced autophagy. Importantly, inhibition of this pathway prevented exendin-4-mediated cell survival and overexpression of TFEB mimicked the cell protective effects of exendin-4 in INS-1E and human islets. Moreover, treatment of db/db mice with exendin-4 for 21 days increased the expression of lysosomal markers within the pancreatic islets. Collectively our data identify the RAPGEF4/EPAC2-calcium-PPP3/calcineurin-TFEB axis as a key mediator of autophagic flux, lysosomal function and cell survival in pancreatic β-cells. Pharmacological modulation of this axis may offer a novel therapeutic target for the treatment of T2D.Abbreviations: AKT1/protein kinase B: AKT serine/threonine kinase 1; AMPK: 5' AMP-activated protein kinase; CAMKK: calcium/calmodulin-dependent protein kinase kinase; cAMP: cyclic adenosine monophosphate; CASP3: caspase 3; CREB: cAMP response element-binding protein; CTSD: cathepsin D; Ex4: exendin-4(1-39); GLP-1: glucagon like peptide 1; GLP1R: glucagon like peptide 1 receptor; GLT: glucolipotoxicity; INS: insulin; MTOR: mechanistic target of rapamycin kinase; NFAT: nuclear factor of activated T-cells; PPP3/calcineurin: protein phosphatase 3; PRKA/PKA: protein kinase cAMP activated; RAPGEF3/EPAC1: Rap guanine nucleotide exchange factor 3; RAPGEF4/EPAC2: Rap guanine nucleotide exchange factor 4; SQSTM1/p62: sequestosome 1; T2D: type 2 diabetes; TFEB: transcription factor EB

    Role of liraglutide in Alzheimer's disease pathology

    Get PDF
    Background The described relationship between Alzheimer's disease (AD) and type 2 diabetes (T2D) and the fact that AD has no succesful treatment has led to the study of antidiabetic drugs that may limit or slow down AD pathology. Main body Although T2D treatment has evident limitations, options are increasing including glucagon-like peptide 1 analogs. Among these, liraglutide (LRGT) is commonly used by T2D patients to improve beta cell function and suppress glucagon to restore normoglycaemia. Interestingly, LRGT also counterbalances altered brain metabolism and has anti-inflammatory properties. Previous studies have reported its capacity to reduce AD pathology, including amyloid production and deposition, tau hyperphosphorylation, or neuronal and synaptic loss in animal models of AD, accompanied by cognitive improvement. Given the beneficial effects of LRGT at central level, studies in patients have been carried out, showing modest beneficial effects. At present, the ELAD trial (Evaluating Liraglutide in Alzheimer's Disease NCT01843075) is an ongoing phase IIb study in patients with mild AD. In this minireview, we resume the outcomes of LRGT treatment in preclinical models of AD as well as the available results in patients up to date. Conclusion The effects of LRGT on animal models show significant benefits in AD pathology and cognitive impairment. While studies in patients are limited, ongoing clinical trials will probably provide more definitive conclusions on the role of LRGT in AD patients

    Periodontitis induced by bacterial infection exacerbates features of Alzheimer\u27s disease in transgenic mice.

    Get PDF
    Periodontitis is a localized infectious disease caused by periodontopathic bacteria,such as Porphyromonas gingivalis. Recently, it has been suggested that bacterial infections may contribute to the onset and the progression of Alzheimer’s disease (AD). However, we do not have any evidence about a causative relationship between periodontitis and AD. In this study, we investigated by using a transgenic mouse model of AD whether periodontitis evoked by P. gingivalis modulates the pathological features of AD. Cognitive function was significantly impaired in periodontitis-induced APP-Tg mice, compared to that in control APP-Tg mice. Levels of Amiloid β (Aβ) deposition, Aβ40, and Aβ42 in both the hippocampus and cortex were higher in inoculated APP-Tg mice than in control APP-Tg mice. Furthermore, levels of IL-1β and TNF-α in the brain were higher in inoculated mice than in control mice. The levels of LPS were increased in the serum and brain of P. gingivalis-inoculated mice. P. gingivalis LPS-induced production of Aβ40 and Aβ42 in neural cell cultures and strongly enhanced TNF-α and IL-1β production in a culture of microglial cells primed with Aβ. Periodontitis evoked by P. gingivalismay exacerbate brain Aβ deposition, leading to enhanced cognitive impairments, by a mechanism that involves triggering brain inflammation

    The proximate composition of three marine pelagic fish: blue whiting (Micromesistius poutassou), boarfish (Capros aper) and Atlantic herring (Clupea harengus)

    Get PDF
    peer reviewedThis study presents data from an in-depth proximate compositional analysis of three marine fish species: blue whiting (Micromesistius poutassou), boarfish (Capros aper) and Atlantic herring (Clupea harengus). These fish contained significant amounts of protein (16–17%), lipids (4–11%) and minerals (2–6% ash). The proteins, particularly from boarfish, had close to optimum amino acid profiles for human and fish nutrition. They compared favourably with other fish species in terms of total lipids and relative concentration of the omega-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid (11.8–13.3% and 5.9–8.1% in triacylglycerols [TG] and 24.6–35.4% and 5.8–12.0% in phospholipids [PL]). Atlantic herring had the highest lipid content among the three fish and was found to contain high levels of PL poly-unsaturated fatty acids, including omega-3 fatty acids. Minerals detected in the fish included calcium (272–1,520 mg/100 g), phosphorus (363–789 mg/100 g), iron (1.07–2.83 mg/100 g), magnesium (40.70–62.10 mg/100 g), potassium (112.00–267.00 mg/100 g), selenium (0.04–0.06 mg/100 g), sodium (218.00–282.00 mg/100 g) and zinc (1.29–5.57 mg/100 g). Boarfish had the highest ash fraction and also the highest levels of all the minerals, except potassium. Atlantic herring had considerably lower mineral content compared with the other two species and, levels detected were also lower than those reported in previously published studies. Heavy metals contents were quantified, and levels were significantly below the maximum allowable limits for all elements except arsenic, which ranged from 1.34 to 2.44 mg/kg in the three fish species. Data outlined here will be useful for guiding product development. Future studies would benefit from considering catch season, sex and developmental stage of the fish

    Macroalgal protein hydrolysates from Palmaria palmata influence the 'incretin effect' in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion

    No full text
    Purpose: This study investigated metabolic benefits of protein hydrolysates from the macroalgae Palmaria palmata, previously shown to inhibit dipeptidylpeptidase-4 (DPP-4) activity in vitro. Methods: Previously, Alcalase/Flavourzyme-produced P. palmata protein hydrolysate (PPPH) improved glycaemia and insulin production in streptozotocin-induced diabetic mice. Here the PPPH, was compared to alternative Alcalase, bromelain and Promod-derived hydrolysates and an unhydrolysed control. All PPPH's underwent simulated gastrointestinal digestion (SGID) to establish oral bioavailability. PPPH's and their SGID counterparts were tested in pancreatic, clonal BRIN-BD11 cells to assess their insulinotropic effect and associated intracellular mechanisms. PPPH actions on the incretin effect were assessed via measurement of DPP-4 activity, coupled with GLP-1 and GIP release from GLUTag and STC-1 cells, respectively. Acute in vivo effects of Alcalase/Flavourzyme PPPH administration on glucose tolerance and satiety were assessed in overnight-fasted mice. Results: PPPH's (0.02-2.5 mg/ml) elicited varying insulinotropic effects (p < 0.05-0.001). SGID of the unhydrolysed protein control, bromelain and Promod PPPH's retained, or improved, bioactivity regarding insulin secretion, DPP-4 inhibition and GIP release. Insulinotropic effects were retained for all SGID-hydrolysates at higher PPPH concentrations. DPP-4 inhibitory effects were confirmed for all PPPH's and SGID counterparts (p < 0.05-0.001). PPPH's were shown to directly influence the incretin effect via upregulated GLP-1 and GIP (p < 0.01-0.001) secretion in vitro, largely retained after SGID. Alcalase/Flavourzyme PPPH produced the greatest elevation in cAMP (p < 0.001, 1.7-fold), which was fully retained post-SGID. This hydrolysate elicited elevations in intracellular calcium (p < 0.01) and membrane potential (p < 0.001). In acute in vivo settings, Alcalase/Flavourzyme PPPH improved glucose tolerance (p < 0.01-0.001) and satiety (p < 0.05-0.001). Conclusion: Bioavailable PPPH peptides may be useful for the management of T2DM and obesity
    corecore