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Boarfish (Capros aper) protein hydrolysate has potent insulinotropic and GLP-1 secretory activity 
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Abstract:    

The antidiabetic actions of a boarfish protein hydrolysate (BPH) were investigated in cultured cells 

and mice. A boarfish (Capros aper) muscle protein hydrolysate was generated using the enzymes 

Alcalase 2.4L and Flavourzyme 500L. Furthermore, the BPH was subjected to simulated 

gastrointestinal digestion (SGID).  BPH and SGID samples (0.01-2.5 mg/ml) were tested in vitro for 

DPP-IV inhibition andinsulin and GLP-1 secretory activity from BRIN-BD11 and GLUTag cells, 

respectively. The BPH and SGID samples, caused a dose-dependent increase (4.2 to 5.3-fold, 

p<0.001) in insulin secretion from BRIN-BD11 cells and inhibited DPP-IV activity (IC50 1.18±0.04 and 

1.21±0.04 mg/ml), respectively.  The SGID sample produced a 1.3-fold (p<0.01) increase in GLP-1 

secretion.  An oral glucose tolerance test (OGTT) was conducted in healthy mice (n=8), with or 

without BPH (50 mg/kg bodyweight). BPH mediated an increase in plasma insulin levels (AUC(0-120 

min), p<0.05) and a consequent reduction in blood glucose concentration (p<0.01), after OGTT in 

mice versus controls.  The BPH showed potent antidiabetic actions in cells and improved glucose 

tolerance in mice.   
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Introduction 

Population expansion combined with a reduction in arable farming land, has seen the exploration 

of natural therapeutics and bioactive food components shift from terrestrial organisms such as 

dairy, plant and animals to oceanic and coastal marine environments.  Thus, bioactive mining of 

seaweeds, ichthyoids and crustaceous and bivalve organisms has increased (Senevirathne & Kim, 

2012). The oceans cover 70% of the earth’s surface and is home to only 15% of all living organisms 

(Grosberg et al. 2012), however it is widely accepted that marine proteins have the potential to 

yield a greater number of uncharacterized biologically active peptides than those from terrestrial 

protein sources (Wang et al, 2017). Research into marine bioactive peptides has expanded 

exponentially over the past decade with improved protein extraction and hydrolysis methods and 

as such, has reaffirmed the importance of utilizing all aspects of marine biomaterials (Senevirathne 

& Kim, 2012).  

Following on from the landmark Diabetes Control and Complications Trial (Nathan et al. 1993), 

classical approaches to treating type-2 diabetes mellitus (T2DM) have been surpassed in favour of 

a more intensive hyperglycaemia management regime. Various strategies have been applied for 

the management of T2DM including dietary manipulation, lifestyle changes and medication 

(Bantle et al. 2008; Gibala et al. 2012; Inzucchi et al. 2012).  Development of anti-hyperglycaemic 

agents from dietary sources has gained impetus as these are generally less expensive to develop, 

have a reduced side-effects profile and are more accepted by the public (Fayaz et al. 2014; 

Gushiken et al. 2016).  

Proteins on their own generally only have a purely caloric effect on biological systems, however, 

hydrolysis of the protein can unlock peptides with clinical or health enhancing significance (Dhaval 

et al. 2016).  The discovery of marine bioactive components could contribute to novel strategies 
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providing therapeutic benefit and better management of many common diseases.  To date, many 

marine bioactive agents have been discovered displaying anti-obesity, anti-diabetic, antimicrobial, 

antihypertensive and anti-carcinogenic properties (Jensen and Mæhre 2016; Wang et al. 2017; Jin 

et al. 2017).  Fish protein is a rich but often unexploited source of bioactive peptides (Ryan et al. 

2011; Kim et al. 2012; Urakova et al. 2012). Capros aper commonly known as boarfish is an 

underutilized fish species that could provide a sustainable source of marine protein for bioactive 

peptide discovery for functional food development. Boarfish is a mesopelagic fish species 

distributed at depths of 40-600 m found abundantly in the Mediterranean and in the Northeast 

Atlantic stretching from Norway to Senegal (Whitehead et al., 1986). Increased boarfish landings 

from Irish and Danish fishery fleets have paved the way for long-term storage and exploitation of 

this non-traditional species (White et al. 2011).   

Research into marine protein and its subsequent hydrolysates and isolated bioactive peptides 

targeting diabetes and its complications is limited.  Nevertheless, some early studies have shown 

the beneficial effects of inhibiting dipeptidylpeptidase-4 (DPP-IV) (Silaa et al. 2016; Huang et al. 

2012; Harnedy et al. 2015;  Harnedy et al. 2018a, 2018b), and thus lowering glycated haemoglobin 

(HbA1c) in human volunteers with T2DM (Zhu et al, 2010).  The aims of the present study were 

firstly to investigate the in vitro insulinotropic and GLP-1 stimulatory effects of a BPH, and secondly 

to investigate the effect of oral consumption of BPH on blood glucose control in healthy mice 

following an oral glucose challenge. 

 

2. Methods 

2.1. Materials 
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H-Gly-Pro-7-amino-4-methyl coumarin (AMC), Diprotin-A (Ile-Pro-Ile), Leu-Trp-Met-Arg, Asp-Glu 

and Tyr.HCl were obtained from Bachem Feinchemikalien (Bubendorf, Switzerland).  Alcalase® 2.4L 

and Flavourzyme® 500L were obtained from Novozymes A/S (Bagsvaerd, Denmark). Corolase PP 

was provided by AB Enzymes (Darmstadt, Germany) and BC pepsin was provided by Biocatalysts 

(Cardiff, UK). All other reagents including DPP-IV from porcine kidney (≥10 units/mg protein), were 

supplied by Sigma Chemical Company Ltd. (Wicklow, Ireland).  A GLP-1 ELISA assay kit was provided 

by Millipore (Hertfordshire, UK), lactate dehydrogenase kit by Promega (Madison, WI, USA) and in 

vitro glucose uptake kit was provided by Cayman Chemicals (Ann Arbor, MI, USA). 

 

2.1.1   Generation of a boarfish protein hydrolysate (BPH) and its simulated gastrointestinal 

digested (SGID) sample. 

Samples of minced boarfish (Capros aper) meat were kindly provided by Killybegs Fishermen's 

Organisation, Killybegs, Co Donegal, Ireland, through Bord Iascaigh Mhara (BIM, Ireland) and 

stored at -20˚C. Minced boarfish meat was suspended in distilled water to a final 6.83% (w/v) 

boarfish protein suspension and homogenised (x4) at 24,000 rpm/min for 15 sec (Ultra-Turrax® 

T25 Basic, IKA®, Staufen, Germany). Hydrolysis was performed at 50°C and pH 7.0 with Alcalase 

2.4L and Flavourzyme 500L at an enzyme:substrate (E:S) ratio of 0.67% (v/w) for 4 h. Enzymes were 

inactivated by heating at 90°C for 20 min. Peptides were then separated by double filtration 

(Whatman grade 1: 11 µm), freeze-dried (FreeZone 18L, Labconco, MO, USA) and stored at -20°C 

until required.   

In order to assess the likely retention of bioactivity following gastrointestinal digestion the BPH 

was subjected to SGID as described by Walsh et al., (2004) with modifications as described below. 

Briefly, the BPH (2.0% (w/v) protein equivalents) was incubated at 37˚C and pH 2 for 90 min with 

pepsin at an E:S of 2.5% (w/w). The sample was adjusted to pH 7 and heat inactivated at 90˚C for 
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20 min. The sample was incubated for 150 min at 37˚C with Corolase PP (E:S of 1% (w/w)) and heat 

inactivated as before. The sample was subsequently freeze-dried and stored at -20oC (Harnedy et 

al. 2018a). 

 

2.1.2 Kjeldahl nitrogen quantification  

The nitrogen content of the minced boarfish meat and BPH were quantified using the macro-

Kjeldahl procedure as described previously (Connolly et al. 2013).  The nitrogen to protein 

conversion factor used was 6.25 (Kristinsson and Rasco, 2000). All samples were analysed in 

triplicate (n=3). 

 

2.1.3 Physicochemical characterisation of protein hydrolysates 

The peptide profiles of the BPH and SGID samples were determined by reverse-phase ultra-

performance liquid chromatography (RP-UPLC (ACQUITY UPLC (Waters, Milford, MA, USA))) as 

described previously by Nongonierma and FitzGerald (2012) with modifications. In brief, the BPH 

and SGID samples were reconstituted at 0.5% (w/v) in mobile phase A (0.1% TFA in MS grade H2O) 

and separated using an ACQUITY BEH 300 C18 RP column (2.1 x 50 mm, 1.7 μm; Waters, Milford, 

MA, USA) at 30oC. Mobile phase B was 0.1% TFA in 80% (v/v) MS grade ACN and the flow rate was 

set at 0.2 mL/min. Peptides and proteins were eluted using a linear gradient: 0–0.28 min: 100% A; 

0.28–45 min: 100–20% A; 45–46 min: 20–0% A; 46–48 min 0% A; 48–49 min: 0–100% A; 49–51 min 

100% A. The absorbance of the eluent was monitored at 214 nm.  

The molecular mass distribution profiles of the samples were determined by gel permeation-high 

performance liquid chromatography (GP-HPLC) as described by Spellman et al. (2005).    In brief, 

the BPH and SGID samples were reconstituted at 0.8% (w/v) in a mobile phase of 0.1% TFA in 30% 

(v/v) HPLC grade ACN. The samples were separated by isocratic elution using a TSK G2000 SW 
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separating column (600 x 7.5 mm ID) connected to a TSKGEL SW guard column (75 x 7.5 mm ID) at 

a flow rate of 1.0 mL min. The detector response was monitored at 214 nm. The molecular mass 

distribution of the proteins/peptides within the samples were determined from a calibration curve 

prepared from the average retention times of standard proteins and peptides. These standards 

include bovine serum albumin (67,500 Da), β-lactoglobulin (36,000 Da), α-lactalbumin (14,200 Da), 

aprotinin (6500 Da), bacitracin (1400 Da), Leu-Trp-Met-Arg (604.8 Da), Asp-Glu (262.2 Da) and 

Tyr.HCl (218 Da). 

 

2.1.4 Insulin secretion studies in clonal pancreatic cells 

Acute insulin secretory effects of BPH and SGID samples were measured in vitro using clonal 

pancreatic BRIN-BD11 cells (McClenaghan et al. 1996).  Briefly, BRIN-BD11 cells were incubated 

for 20 min (acute test) with a range of hydrolysate concentrations (0.039 –2.5 mg/ml) in the 

presence of 5.6 mM glucose at 37°C.   After 20 min the cell supernatant (900 l) taken from the 

acute test wells were frozen at -20°C.  Insulin was quantified using a dextran-coated charcoal 

radioimmunoassay (RIA), using crystalline rat insulin standard, guinea-pig anti-porcine antiserum 

(1:30,000 dilution) and 125I-bovine standard (10,000 cpm), as described by Flatt & Bailey (1981). 

The concentration of insulin in each sample was determined in duplicate (200 l aliquots) from the 

prepared insulin standard curve ranging from 20 ng/ml stock to 0.039 ng/ml.   

 

 

2.2   Cytotoxicity assay 

To determine the cytotoxicity of the BPH and SGID samples on BRIN-BD11 cells, the release of 

lactate dehydrogenase (LDH) was measured in cell supernatants obtained from acute insulin-

release experiments.  LDH activity in the cell supernatants was determined using a CytoTox96 non-
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radioactive cytotoxicity assay kit (Promega, Madison, WI, USA), as per manufacturer’s instructions. 

LDH results were compared to cells incubated with KRBB supplemented with 5.6 mmol/L glucose 

alone.  

 

2.3    In vitro GLP-1 secretions from GLUTag cell  

In vitro effects of the BPH and the SGID samples on GLP-1 secretion were measured using the 

murine enteroendocrine GLUTag cell line kindly gifted to Ulster University by Professor Fiona 

Gribble at University of Cambridge, which originated from the laboratory of Dr Daniel Drucker, 

Toronto (Drucker et al. 1994).  Cells were cultured in high glucose (25 mM) Dulbecco’s Modified 

Eagle’s Medium as described previously (McLaughlin et al. 2016).  Cells were seeded into 24 well 

plates (150,000 cells/ well) and allowed to attach overnight at 37°C.  Following a pre-incubation 

step (1.1 mM glucose solution in KRBB for 40 min at 37°C), cells were incubated with the BPH and 

SGID samples (2.5 mg/ml) prepared in 2 mM glucose (2 h at 37°C).  Thereafter, 800 µl of 

experimental supernatant was collected and subsequently used to measure total GLP-1 release 

using an ELISA (Millipore, Hertfordshire, UK) as per manufacturer’s protocol.  

 

2.4   Dipeptidyl peptidase-4 (DPP-IV) inhibition in vitro  

DPP-IV inhibition was determined with porcine kidney DPP-IV using an assay buffer consisting of 

100 mM Tris–HCl, pH 8.0 as described previously (Harnedy et al. 2015). All assays were performed 

in triplicate (n=3).  For DPP-IV inhibition, activity results were expressed as IC50 values (inhibitory 

concentration, which inhibited DPP-IV activity by 50%).  

 

2.5   Glucose uptake study using differentiated adipocytes 
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Adipocyte (3T3-L1) cells were obtained from the American Type Culture Collection (ATCC, 

Manassas, Virginia, USA).  Cellular glucose uptake studies were carried out as described by O’Harte 

et al. 2018. 3T3-L1 cells were seeded in a 96 blackwalled, clear bottom plate (2 x 104 cell/well; 

Greiner Bio-one, Germany) and left to attached overnight.  Cells were treated with the test sample 

(100 µl) or control which were supplemented in glucose-free culture medium containing 150 µg/ml 

fluorescently-tagged deoxyglucose analogue (2-NBDG) and incubated for 20 min.  After incubation, 

the plate was then centrifuged for 5 min at 400 x g at room temperature. The supernatant was 

aspirated and cells were washed with 200 µl cell-based assay buffer followed by further 

centrifugation for 5 min.  The wash buffer was removed and 100 µl of cell-based assay buffer was 

added to all wells and the fluorescence was read immediately at 485 nm with emission measured 

at 535 nm using the FlexStation scanning fluorimeter (Molecular Devices, USA). 

 

2.6   Intracellular calcium ([Ca2+]i) and membrane potential studies 

Monolayers of BRIN-BD11 cells were utilised to measure changes in [Ca2+]i  and membrane 

potential (Srinivasan et al. 2013)  using fluorimetric Ca2+ and membrane potential assay kits, 

respectively (Molecular Devices, Sunnyvale, CA, USA) as described by the manufacturer.  Briefly, 

BRIN-BD11 cells were incubated with the BPH (2.5 mg/ml, at 37°C for 10 min) in the presence of 

5.6 mM glucose.  Alanine (10 mM) and KCl (10 mM) were used as positive controls. A Flexstation 

scanning fluorimeter with integrated fluid transfer was used for data acquisition (Molecular 

Devices, Rockville, MD, USA).  

 

2.7  In vivo studies in healthy mice 

http://www.sciencedirect.com/science/article/pii/S0196978114000436#bib0190
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Adult (3 months old) male National Institute of Health Swiss mice (NIH Swiss, Envigo, Bicester, UK) 

were housed individually in an air-conditioned room (22 ± 2°C) with a 12 h light: 12 h dark cycle 

(lights off between 20:00 and 08:00 h). Animals were maintained on a standard rodent chow 

(Teklad Global 18% Protein Rodent Diet; Harlan, UK; total energy 13.0 kJ/g). All animal experiments 

were carried out in accordance with the UK Animals (Scientific Procedures) Act 1986 and EU 

Directive 2010/63EU for animal experiments and approved by the Ulster University Animal 

Welfare and Ethical Review Committee.  All necessary steps were observed to ameliorate any 

potential animal suffering.  Overnight fasted (16 h) mice (n=8) received glucose dissolved in 

physiological saline (pH 7.4) by oral gavage (18 mmol/kg body weight) or glucose (18 mmol/kg 

body weight) supplemented with the BPH dissolved in saline (50 mg/kg body weight). Blood 

samples were collected from the tail at various time points (from t=0 to 120 min) as indicated in 

Fig. 6 and no adverse effects were observed. Blood glucose concentrations were measured using 

a Bayer Contour glucose monitor (Bayer, Newbury, UK). A small volume of blood (50-100 l) was 

collected at each time point in fluoride oxalate coated tubes. Tubes were immediately centrifuged 

at 13000 rpm for 5 min and plasma stored in low protein binding Eppendorf tubes at -20oC until 

analysis. Circulating plasma insulin was measured in duplicate (10 l aliquots) by 

radioimmunoassay as described previously (Flatt & Bailey, 1981).  

 

2.8    Statistical analysis 

All results were analysed using statistical software GraphPad Prism version 5.0 (GraphPad 

Software Inc., San Diego, CA, USA) and data presented as the mean ± S.E.M. Statistical analyses 

were performed using the students unpaired t-test. Where appropriate, blood glucose data were 
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compared using one-way and two-way analysis of variance (ANOVA), followed by Student-

Newman-Keul’s post hoc test. Data were considered to be significantly different when p<0.05.  

 

3 Results 

3.1 RP-UPLC and molecular mass distribution profiles 

The RP-UPLC profiles of the BPH and SGID samples indicate that further degradation of the 

hydrolysate occurred during SGID (Fig. 1).  Furthermore, the SGID sample has a greater percentage 

of smaller peptides <1 kDa (91.6%) compared to BPH (73.6%) as determined from molecular mass 

distribution profiles (Table 1).   

 

3.2   Inhibition of porcine DPP-IV activity 

The effect of the BPH and its SGID sample on  DPP-IV inhibition were examined. These showed 

DPP-IV inhibitory IC50 values of 1.18 ± 0.04 mg/ml and 1.21 ± 0.04 mg/ml for the hydrolysate and 

SGID sample, respectively (Table 1).  Both samples exhibited potent DPP-IV inhibitory activity. 

However, no significant difference in DPP-IV inhibition was observed between the BPH and SGID 

samples.  

 

3.3 Insulin release from BRIN-BD11 cells 

The BPH (from 0.078 to 2.5 mg/ml) produced using a combination of the food-grade enzymes 

Alcalase 2.4L and Flavourzyme 500L, elicited a dose-dependent increase in insulin secretion from 

1.5 to 4.2-fold (versus glucose alone) from clonal pancreatic BRIN-BD11 cells cultured at 5.6 mM 
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glucose (Fig. 2A, p<0.001).  The insulinotropic activity of the BPH (2.5 mg/ml) was further enhanced 

by the SGID process (5.3-fold increase; p<0.001, Fig. 2B) and was more marked when compared to 

a high concentration of GLP-1 (10-6 M) which was the positive control (Fig. 2B).  The action of the 

BPH and SGID samples on insulin secretion was dependent upon their endogenous stimulatory 

actions and was not due to any cytotoxic cellular effects, as shown by the lack of lactate 

dehydrogenase (LDH) release, at all of the concentrations tested (Fig. 2 C,D).  

 

3.4   GLP-1 secretion from GLUTag cells 

Forskolin is a drug which is used to increase adenylyl cyclase activity and enhances intracellular 

cAMP and was used as a positive control for GLP-1 secretion. GLP-1 secretion from GLUTag cells 

was increased by 1.9-fold (p<0.001) in the presence of the Forskolin® (10 mM) (Fig. 3) compared 

to the basal rate (25 mM glucose alone).  The BPH at 2.5 mg/ml failed to stimulate GLP-1 secretion 

from GLUTag cells above the basal rate (1.1-fold, p>0.05, Fig. 3). However, in contrast the BPH 

subjected to SGID elicited a 1.3-fold (p<0.01, Fig 3) increase over the basal rate. This response was 

significantly higher than that mediated by the BPH prior to SGID (p<0.05, Fig. 3).  

 

3.5   Glucose uptake in differentiated adipocytes 

All experimental conditions contained KRBB without D-glucose (glucose free medium) with 

subsequent addition of 2-deoxyglucose (2-DG) with or without insulin (1 nM). The negative 

control, apegenin, showed that 2-DG uptake can be blocked in these differentiated 3T3-L1 cells 

whereas insulin (100 nM) can enhance 2-DG uptake (Fig. 4). The BPH (2.5 mg/ml) increased glucose 

uptake by 30% in 3T3-L1 adipocytes compared to the 2-DG only control KRBB in glucose free 
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medium (p<0.01, Fig. 4).  This BPH effect was similar to the magnitude of glucose uptake observed 

with the lower dose of insulin (1 nM).   The SGID sample also displayed a similar improved glucose 

uptake (30%) compared to the glucose free medium control (p<0.01, Fig. 4).  Notably the 

combination of the BPH or SGID sample with low dose insulin (1 nM) did not surpass the effect of 

either agent alone and thus there were not any statistically significant additive or synergistic 

effects present (p>0.05; Fig. 4).   

 

3.6   Intracellular calcium concentration and membrane potential studies 

The BPH (2.5 mg/ml) when tested on BRIN-BD11 cells resulted in a biphasic increase of [Ca2+]i, 

including a small sharp increase, followed by gradual sustained increase throughout the 300 s test 

period, which was significantly greater than the 5.6 mM glucose control (p<0.001, Fig. 5A).   In 

agreement, the integrated area under the curve (AUC(0-300 s)) values were similar to the positive 

control (10 mM Alanine) and was significantly enhanced (12.5 to 12.8-fold) versus the glucose 

control (p<0.001, Fig. 5C).  Similarly, the BPH produced an initial sharp increase in membrane 

potential, which by 100 s levelled out to just below basal levels (Fig. 5B).   The magnitude of 

membrane depolarisation was significantly lower compared to the positive control 10 mM KCl 

(p<0.001, Fig. 5B).  Despite this the overall response from AUC(0-300 s) value was significantly higher 

for the BPH versus the 5.6 mM glucose control (p<0.05, Fig. 5D). 

 

3.7   Glucose tolerance and insulin release in normal healthy mice  

Oral administration of the BPH (50 mg/kg body weight) concomitantly with glucose in NIH Swiss 

mice resulted in a significant lowering of blood glucose concentrations at 15 min (p<0.05), 30 min 
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(p<0.001) and 60 min (p<0.05) compared to control mice receiving glucose alone (Fig. 6A). This 

correlated to a significantly decreased integrated AUC(0-120 min) blood glucose concentration (22% 

reduction, p<0.01, Fig. 6C).  The BPH induced a corresponding increase in plasma insulin 

concentrations, which were moderately elevated, but failed to reach significance at individual time 

points (Fig. 6B).  Nevertheless the overall integrated AUC(1-120 min) insulin response was significantly 

increased (36%, p<0.05, Fig. 6D) compared to the glucose control.  Thus, overall oral administration 

of the BPH showed an enhanced acute insulinotropic response and a corresponding improved 

glucose tolerance in normal mice challenged with oral glucose. 

 

4 Discussion 

In the present study our key findings demonstrated that orally administered BPH (50 mg/ml) 

showed distinct anti-diabetic actions including in vivo insulin releasing responses and associated 

significantly improved glycaemic control following an oral glucose tolerance test (OGTT) in normal 

mice. This  was in line with their pronounced insulinotropic actions in vitro.  The present findings 

compare favourably with results published recently with other fish hydrolysates (Harnedy et al. 

2018a; 2018b). For example, in the case of blue whiting (Micromesistius poutassou) a two-fold 

higher dose of protein hydrolysate (100 mg/ml) generated using Alcalase 2.4L and Flavourzyme 

500L had a similar acute glucose-lowering effect (22% AUC(0-120 min) reduction) following an OGTT 

in normal healthy mice (Harnedy et al. 2018a).  Furthermore, the in vitro anti-diabetic effects of 

protein hydrolysates derived from Atlantic salmon (Salmo salar) showed a similar profile to the 

BPH studied herein (Harnedy et al. 2018b).  Additionally, Cudennec and colleagues (2015) have 

demonstrated that a protein hydrolysate from cuttlefish (Sepia officinalis) exhibited DPP-IV 

inhibitory activity and GLP-1 releasing actions on STC-1 cells in vitro.  Others have demonstrated 
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that a collagen hydrolysate exhibited DPP-IV inhibitory activity and stimulated glucagon-like-

peptide-1 (GLP-1) secretion in vitro (Iba et al. 2016).  Furthermore, they showed that a collagen 

hydrolysate also improved glucose tolerance in response to oral glucose in normal mice, which 

was thought to be mediated partially through enhanced GLP-1 secretion as well as inhibition of 

intestinal glucose uptake (Iba et al. 2016; Neves et al. 2017). 

The wide range of bioactivities contained within the marine environment has sparked much 

interest in terms of functional food ingredients and the potential for metabolic disease prevention 

and management (Zhu et al. 2010; Lordan et al. 2011; Drotningsvik et al. 2016).  To our knowledge, 

this is the first report ofa protein hydrolysate derived from boarfish showing anti-diabetic 

potential.  In the present study, acute incubation of cultured pancreatic BRIN-BD11 cells with a 

BPH, stimulated insulin secretion in a dose-dependent manner.  Interestingly, the insulin releasing 

action of the hydrolysate was not only retained, but improved following SGID, suggesting the 

possibility of improved oral efficacy and potency following gastrointestinal digestion.  Acute 

treatment with the BPH or SGID samples did not affect pancreatic -cell viability, as indicated by 

LDH assay results, reaffirming that the insulinotropic action was via a regulated physiological 

signalling pathway rather than simply caused by -cell damage leading to unregulated insulin 

release.  Modulation of Ca2+ handling by clonal beta cells is a key mechanism of the BPH-induced 

insulin release, although confirmation of this pathway by removing extracellular Ca2+ or using a 

calcium channel blocker such as Verapamil® is required to verify the results obtained here (Ojo et 

al. 2014).  The membrane potential results revealed a depolarising phase in response to the BPH, 

which was complemented by a biphasic increase in intracellular Ca2+. The present finding suggests 

involvement of the -cell KATP channel in hydrolysate action.   
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GLP-1 and CCK-8 secretion from cultured STC-1 cells has been used to screen for bioactivity of fish 

protein hydrolysate (Cudennec et al. 2012) and whey protein hydrolysate (Power-Grant et al. 

2015).  Murine entero-endocrine GLUTag cells, have been previously utilised in the nutritional 

investigation of bioactive compounds and to screen for potential therapeutic agents affecting GLP-

1 secretion as well as for investigating mechanisms of action (Brubaker et al. 1998; Brubaker & 

Anini 2003).  The drug Forskolin® is a potent stimulator of cAMP production, which drives GLP-1 

secretion (Reimann et al. 2008) and was used in the present study for comparison with the BPH 

related effects. Various nutrient dependant stimuli, including glucose and amino acids such as 

glutamine can trigger GLUTag membrane depolarization by closure of ATP-sensitive potassium 

channel and Na+-coupled uptake and increased intracellular Ca2+ through voltage-gated Ca2+ 

channels (Reimann & Gribble, 2002; Gribble et al. 2003).  Other agents such as fatty acids and 

hormones could augment GLP-1 release by acting at points downstream of depolarisation. GLP-1 

release from GLUTag cells have been linked to activation of PKA and PKC pathways (Gribble et al. 

2003).  In vivo efficacy of peptides and hydrolysates hinge on their capacity to reach the target 

cells/membrane/receptor without losing this potency. The gastrointestinal (GI) tract is known to 

be a major barrier, encompassing digestive enzymes and sharp changes in pH which could 

influence structure and alter functional properties of peptides (MÖller et al. 2008; Moughan et al. 

2014).  Interestingly, in the present study GLP-1 release from GLUTag cells was enhanced after 

exposure to SGID, which could be a distinct advantage to incorporating a BPH as a dietary 

functional food ingredient.   This may suggest higher oral bioavailability of  the BPH after 

gastrointestinal digestion, or that perhaps the SGID step liberated further amino acids or small 

peptides that may exert a greater secretory action on GLUTag cells. The hydrolysate subjected to 

SGID also showed improved insulin secretion from BRIN-BD11 cells via membrane depolarization 
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and enhanced intracellular Ca2+ fluxes and similar mechanisms could be facilitating its GLP-1 

releasing effects, but further detailed mechanistic studies would be required to prove this link.  

Recently peptide/protein interaction and inhibition of endogenous enzymes have emerged as a 

therapeutic approach to treating conditions such as hypertension (Furuta et al. 2016) and diabetes 

(Forbes et al. 2013; Harnedy et al. 2015).  The enzyme DPP-IV is present on cell membranes and in 

soluble form in blood plasma and is responsible for the rapid inactivation of GLP-1 and GIP 

(Mentlein et al. 1993) and therefore new oral DPP-IV inhibitors such as Vildagliptin® and 

Saxagliptin® have been developed to help with glycaemic management in T2DM (Ahren et al. 2011; 

Chen et al. 2015).   The oral efficacy of BPH-derived peptides, which are absorbed in the small 

intestine, may play an important role in inhibiting DPP-IV activity.  The clinical benefits of peptide 

and amino acid inhibition of DPP-IV and targeting this as a therapeutic strategy have been 

previously described (Nongonierma et al. 2013).  Here we showed that this DPP-IV inhibition was 

present at least in vitro with the BPH and SGID samples having similar IC50 values (Table 1).  In 

general, rodent studies have shown that a food protein hydrolysate having in vitro DPP-IV 

inhibitory activity, can also translate to anti-diabetic effects in vivo (Nongomierma & FitzGerald 

2016).  It remains to be seen if the boarfish DPP-IV inhibitory action is due to a single peptide 

entity, or as seems more likely, a combination of several component peptides and thus further 

extensive characterization work is required to help identify potent individual bioactive peptide(s) 

(Harnedy et al. 2015).  

3T3-L1 adipocyte cells were utilised to examine the ability of the BPH and SGID samples to 

stimulate glucose transport.  3T3-L1 adipocytes exhibit all the components of insulin receptor and 

signal transduction cascade and are frequently used to investigate insulin mediated glucose 

transport (Brubaker et al. 1998; Tang et al. 2016).  The BPH and SGID samples showed improved 
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glucose uptake in 3T3-L1 cells (p<0.01) which was similar to that of lower dose insulin (10-9 M) 

alone, but it was not as potent as the higher insulin control (10-7 M).  The action of insulin in 

adipocytes is known to increase the number of functional glucose transporters, thus increasing the 

rate of glucose uptake (Shi & Kandror 2008; Simpson et al. 1983; Holman and Cushman 1994).  The 

BPH may act through improved activation or redistribution of glucose transporters, although 

further work is required to investigate their mode of action.  

In conclusion, this study set out to display the potential therapeutic utility of a commonly 

underutilized protein source, namely the pelagic fish boarfish.  A BPH displayed positive anti-

diabetic like actions in a variety of in vitro assays (which was retained following SGID), and these 

bioactivities were supported from acute glucose tolerance studies in normal mice, demonstrating 

potent insulinotropic and glucose lowering actions.  Taken together our data suggests that a BPH 

represents a suitable target for development of functional food components for potential 

treatment of pre-diabetes or T2DM.  Further assessment in chronic animal studies and in humans 

as well as peptide identification studies are required to confirm their potential.  
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Figure 1. Reverse phase ultra-performance liquid chromatography profile of boarfish (Capros aper) protein hydrolysate (BPH) and its 

simulated gastrointestinal digestion (BPH-SGID) sample. 
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Figure 2: Effect of a boarfish (Capros aper) hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L and its simulated gastrointestinal 

digestion (SGID) sample on insulin secretion and cytotoxicity.  
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Figure 3: Effect of a boarfish (Capros aper) hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L and its simulated gastrointestinal 

digestion (SGID) sample on GLP-1 secretion from cultured GLUTag cells 
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Figure 4. Effect of a boarfish (Capros aper) hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L and its simulated gastrointestinal 

digestion (SGID) sample on glucose uptake in cultured 3T3-L1 cells.  
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Figure 5: Effects of boarfish hydrolysates on intracellular [Ca2+]i and membrane potential in pancreatic BRIN-BD11 cells 
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Figure 6: Acute effects of a boarfish (Capros aper) protein hydrolysate on glucose tolerance in normal mice.
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Table 1.  Molecular mass (Mw) distribution of a boarfish (Capros aper) protein hydrolysate (BPH) generated with Alcalase 2.4L and Flavourzyme 

500L and its simulated gastrointestinal digestion (BPH:SGID) sample and effects on dipeptidyl peptidase (DPP-IV) inhibition. 

Test Sample Molecular mass distribution (% area) 

   >10 kDa      5-10 kDa      2-5 kDa       1-2 kDa        <1 kDa 

DPP-IV inhibition 

IC50 (mg/ml) 

BPH 

BPH:SGID 

0.15 

0 

0.80 

0 

7.11 

0.8 

18.38 

7.63 

73.56 

91.57 

1.18 ± 0.04a 

1.21 ± 0.04a 

  
Mean ± SEM (n=3), IC50: inhibitory concentration that inhibits enzyme activity by 50%, DPP-IV inhibition values with different letters are 

significantly different at p<0.05. 
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Legends to Figures 

 

Figure 1. Reverse phase ultra-performance liquid chromatography profile of boarfish (Capros aper) protein hydrolysate (BPH) and its simulated 

gastrointestinal digestion (BPH-SGID) sample. 

Separation of the BPH and BPH-SGID was carried out at 30°C, using a 2.1 × 100 mm, 1.7 m Acquity UPLC C18 BEH column. The flow rate was set at 0.2 mL 

min−1. Solvent A was 0.1% (v/v) TFA in HPLC grade water and solvent B was 0.1% (v/v) TFA in 80% HPLC grade acetonitrile. Peptides were eluted using a linear 

gradient: 0–30 min, 0-53% B and the absorbance of the eluent was monitored at 214 nm.  

 

Figure 2. Effect of a boarfish (Capros aper) hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L and its simulated gastrointestinal digestion (SGID) 

sample on insulin secretion and cytotoxicity.  

Concentration-dependent effects of boarfish hydrolysate and SGID hydrolysate generated from Alcalase + Flavourzyme on  insulin secretion (A + B) and LDH 

release (C + D) from BRIN-BD11 cells at 5.6 mM glucose. White bars, glucose alone; grey bars, GLP-1 (10-6 M); black bars, boarfish hydrolysate (0.009 to 2.5 

mg/ml). Values are expressed as mean  S.E.M. (n=6). ***p<0.001 compared to respective glucose control. 
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Figure 3: Effect of a boarfish (Capros aper) hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L and its simulated gastrointestinal digestion (SGID) 

sample on GLP-1 secretion from cultured GLUTag cells. 

The white bar represents glucose alone; grey bar is Forskolin® (10 mM); black bar is boarfish hydrolysate (BPH) and horizontal striped bar is the boarfish 

hydrolysate after SGID. Values are expressed as mean ± SEM (n=4). **p<0.01, ***p<0.001 compared to glucose control and p<0.05 versus the BPH.  

 

Figure 4. Effect of a boarfish (Capros aper) hydrolysate generated with Alcalase 2.4L and Flavourzyme 500L and its simulated gastrointestinal digestion (SGID) 

sample on glucose uptake in cultured 3T3-L1 cells.  

Glucose uptake was measured in differentiated 3T3-L1 adipocytes using a fluorescent assay. Apigenin was used as a negative control and a high insulin 100 

nM was used as a positive control. Boarfish hydrolysate and the SGID sample were analysed in the presence and absence of a low basal insulin (1 nM). Values 

are mean ± SEM (n=3) **p<0.01, ***p<0.001 compared to the control (deoxyglucose in glucose free KRBB buffer). No significant differences were found 

between either BPH versus BPH + insulin or between SGID versus SGID + insulin. 
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Figure 5: Effects of boarfish hydrolysates on intracellular [Ca2+]i and membrane potential in pancreatic BRIN-BD11 cells 

Effects of boarfish hydrolysate on (A) intracellular calcium and (B) membrane potential in BRIN-BD11 cells expressed as RFU and area under the curve (C, D). 

Panel (C) shows the area under the curve (AUC1-120 min) data for the blood glucose response in panel A.  Panel (D) shows the AUC(0-120 min) data relating to the 

plasma insulin responses in panel B. Values represent means ± SEM for 8 mice. *p<0.05, ***p<0.001 compared to 5.6 mM glucose control. ∆∆∆p<0.001 

compared to positive control (KCl).  

 

Figure 6: Acute effects of a boarfish (Capros aper) protein hydrolysate on glucose tolerance in normal mice. 

Acute glucose homeostatic effects of boarfish in 16 h fasted normal mice after standardisation. (A) Blood glucose and (B) plasma insulin concentrations were 

measured prior to and after oral gavage of glucose alone (18 mmol/kg bw) as a control, or in combination with boarfish extract (50 mg/kg bw). Area under 

the curve (AUC(0-120 min)) for (C) blood glucose and (D) Plasma insulin post-gavage is also shown. Values represent means ± SEM for 8 mice. *p<0.05, **p<0.01, 

***p<0.001 compared with glucose alone.  

 

 
 
 


