134 research outputs found
Vibrational Spectroscopy of Liquid Biopsies for Prostate Cancer Diagnosis
Background: Screening for prostate cancer with prostate specific antigen and digital rectal examination allows early diagnosis of prostate malignancy but has been associated with poor sensitivity and specificity. There is also a considerable risk of over-diagnosis and overtreatment, which highlights the need for better tools for diagnosis of prostate cancer. This study investigates the potential of high throughput Raman and Fourier Transform Infrared (FTIR) spectroscopy of liquid biopsies for rapid and accurate diagnosis of prostate cancer.
Methods: Blood samples (plasma and lymphocytes) were obtained from healthy control subjects and prostate cancer patients. FTIR and Raman spectra were recorded from plasma samples, while Raman spectra were recorded from the lymphocytes. The acquired spectral data was analysed with various multivariate statistical methods, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and classical least squares (CLS) fitting analysis.
Results: Discrimination was observed between the infrared and Raman spectra of plasma and lymphocytes from healthy donors and prostate cancer patients using PCA. In addition, plasma and lymphocytes displayed differentiating signatures in patients exhibiting different Gleason scores. A PLS-DA model was able to discriminate these groups with sensitivity and specificity rates ranging from 90% to 99%. CLS fitting analysis identified key analytes that are involved in the development and progression of prostate cancer.
Conclusions: This technology may have potential as an alternative first stage diagnostic triage for prostate cancer. This technology can be easily adaptable to many other bodily fluids and could be useful for translation of liquid biopsy-based diagnostics into the clinic
Effect of hemolysis on Fourier transform infrared and Raman spectra of blood plasma
Hemolysis is a very common phenomenon and is referred as the release of intracellular components from red blood cells to the extracellular fluid. Hemolyzed samples are often rejected in clinics due to the interference of hemoglobin and intracellular components in laboratory measurements. Plasma and serum based vibrational spectroscopy studies are extensively applied to generate spectral biomarkers for various diseases. However, no studies have reported the effect of hemolysis in blood based vibrational spectroscopy studies. This study was undertaken to evaluate the effect of hemolysis on infrared and Raman spectra of blood plasma. In this study, prostate cancer plasma samples (n = 30) were divided into three groups (nonhemolyzed, mildly hemolyzed, and moderately hemolyzed) based on the degree of hemolysis and FTIR and Raman spectra were recorded using high throughput (HT)-FTIR and HT-Raman spectroscopy. Discrimination was observed between the infrared and Raman spectra of nonhemolyzed and hemolyzed plasma samples using principal component analysis. A classical least square fitting analysis showed differences in the weighting of pure components in nonhemolyzed and hemolyzed plasma samples. Therefore, it is worth to consider the changes in spectral features due to hemolysis when comparing the results within and between experiments
Biofluid infrared spectro-diagnostics : pre-analytical considerations for clinical applications
Several proof-of-concept studies on vibrational spectroscopy of biofluids have demonstrated that the methodology has promising potentials as a clinical diagnostic tool. However, these studies also show that there is lack of standardised protocol in sample handling and preparation prior to spectroscopic analysis. One of the most important sources of analytical errors is the pre-analytical phase. For the technique to be translated into clinics, it is clear that a very strict protocol needs to be established for such biological samples. This study focuses on some of the aspects of the pre-analytical phase in the development of high=throughput Fourier Transform Infrared (FTIR) spectroscopy of some of the most common biofluids such as serum, plasma and bile. Pre-analytical considerations that can impact either the samples (solvents, anti-coagulants, freeze-thaw cycles....) and/or spectroscopic analysis (sample preparation such as drying, deposit methods, volumes. substrates. operators dependence...) and consequently on the quality and the reproducibility of spectral data will be discussed in the report
Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi
DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi
Evolution of CDC42, a putative virulence factor triggering meristematic growth in black yeasts
The cell division cycle gene (CDC42) controlling cellular
polarization was studied in members of Chaetothyriales. Based on
ribosomal genes, ancestral members of the order exhibit meristematic growth in
view of their colonization of inert surfaces such as rock, whereas in derived
members of the order the gene is a putative virulence factor involved in
expression of the muriform cell, the invasive phase in human
chromoblastomycosis. Specific primers were developed to amplify a portion of
the gene of 32 members of the order with known position according to ribosomal
phylogeny. Phylogeny of CDC42 proved to be very different. In all
members of Chaetohyriales the protein sequence is highly conserved.
In most species, distributed all over the phylogenetic tree, introns and
3rd codon positions are also invariant. However, a number of
species had paralogues with considerable deviation in non-coding exon
positions, and synchronous variation in introns, although non-synonomous
variation had remained very limited. In some strains both orthologues and
paralogues were present. It is concluded that CDC42 does not show any
orthologous evolution, and that its paralogues haves the same function but are
structurally relaxed. The variation or absence thereof could not be linked to
ecological changes, from rock-inhabiting to pathogenic life style. It is
concluded that eventual pathogenicity in Chaetothyriales is not
expressed at the DNA level in CDC42 evolution
Diagnosis Of The Chronic Lymphocytic Leukemia (CLL) Using A Raman-Based Scanner Optimized For Blood Smear Analysis (M3s Project)
Introduction/ Background
In hematology, actual diagnosis of B chronic lymphocyte-leukemia (CLL) is based on the microscopic analysis of cell morphology from patient blood smear. However, new photonic technologies appear promising to facilitate and improve the early diagnosis, prognostic and monitoring of personalized therapy. The development of automated diagnostic approaches could assist clinicians in improving the efficiency and quality of health services, but also reduce medical costs.
Aims
The M3S project aims at improving the diagnosis and prognosis of the CLL pathology by developing a multimodal microscopy platform, including Raman spectrometry, dedicated to the automatic analysis of lymphocytes.
Methods
Blood smears were prepared on glass slides commonly used in pathology laboratories for microscopy. Two types of sample per patient were prepared: a conventional blood smear and a deposit of “pure” lymphocyte subtypes (i.e. normal B, CLL B, T and NK), sorted out in flow cytometry by using the negative double labeling technique. The second sample is used for the construction of a database of spectral markers specific of these different cell types. The preparations were analyzed with the multimodal machine which combines i) a Raman micro-spectrometer, equipped with a 532nm diode laser excitation source; ii) a microscope equipped with 40x and 150x lenses and a high precision xyz motorized stage for scanning the blood smear, and localizing x-y coordinates of representative series (~100 for each patient) of lymphocyte cells before registering three Raman spectra; these cells of interest being previously localized by an original method based on the morphology analysis. After the Raman acquisitions, the conventional blood smears were submitted to immunolabelling using specific antibodies. For the establishment of the Raman classifiers, this post-acquisition treatment was used as reference to distinguish the different lymphocyte sub-populations. Raman data were then analyzed using chemometric processing and supervised statistical classifiers in order to construct a spectral library of markers highly specific of the lymphocyte type and status (normal or pathological).
Results
Currently, a total of 60 patients (CLL and healthy) were included in the study. Various classification methods such as LDA (Linear Discriminant Analysis), PLS-DA (Partial Least Square Discriminant Analysis), RF (Random Forest) and SVM (Support Vector Machine), were tested in the purpose to distinguish tumoral B lymphocytes from other cell types. These classification algorithms were combined with feature selection approaches. The best performances were around 70% of correct identification when a three-class model (B-CLL vs B-normal vs T and NK lymphocytes) was considered, and 80% in case of a two-class model (B-CLL vs B-normal lymphocytes). These encouraging results demonstrate the potential of Raman micro-spectroscopy coupled to supervised classification algorithms for leukemic cell classification. The approach can find interest more generally in the field of cyto-hematology. Further developments will concern the integration of additional modality such as Quantitative Phase Imaging on one hand to speed the exploration process of cells of interest to be probed, and on the other hand to extract additional characteristics likely to be informative for CLL diagnosis. In addition, the identification of prognostic markers will be investigated by confronting the photonic data to clinical patient information.
Phylogenetic and morphotaxonomic revision of Ramichloridium and allied genera
The phylogeny of the genera Periconiella, Ramichloridium,
Rhinocladiella and Veronaea was explored by means of partial
sequences of the 28S (LSU) rRNA gene and the ITS region (ITS1, 5.8S rDNA and
ITS2). Based on the LSU sequence data, ramichloridium-like species segregate
into eight distinct clusters. These include the Capnodiales
(Mycosphaerellaceae and Teratosphaeriaceae), the
Chaetothyriales (Herpotrichiellaceae), the Pleosporales, and
five ascomycete clades with uncertain affinities. The type species of
Ramichloridium, R. apiculatum, together with R. musae,
R. biverticillatum, R. cerophilum, R. verrucosum, R. pini, and three new
species isolated from Strelitzia, Musa and forest soil,
respectively, reside in the Capnodiales clade. The human-pathogenic
species R. mackenziei and R. basitonum, together with R.
fasciculatum and R. anceps, cluster with Rhinocladiella
(type species: Rh. atrovirens, Herpotrichiellaceae,
Chaetothyriales), and are allocated to this genus. Veronaea
botryosa, the type species of the genus Veronaea, also resides
in the Chaetothyriales clade, whereas Veronaea simplex
clusters as a sister taxon to the Venturiaceae (Pleosporales), and is
placed in a new genus, Veronaeopsis. Ramichloridium
obovoideum clusters with Carpoligna pleurothecii (anamorph:
Pleurothecium sp., Chaetosphaeriales), and a new combination
is proposed in Pleurothecium. Other ramichloridium-like clades
include R. subulatum and R. epichloës (incertae sedis,
Sordariomycetes), for which a new genus, Radulidium is
erected. Ramichloridium schulzeri and its varieties are placed in a
new genus, Myrmecridium (incertae sedis, Sordariomycetes).
The genus Pseudovirgaria (incertae sedis) is introduced to
accommodate ramichloridium-like isolates occurring on various species of rust
fungi. A veronaea-like isolate from Bertia moriformis with
phylogenetic affinity to the Annulatascaceae (Sordariomycetidae) is
placed in a new genus, Rhodoveronaea. Besides
Ramichloridium, Periconiella is also polyphyletic.
Thysanorea is introduced to accommodate Periconiella papuana
(Herpotrichiellaceae), which is unrelated to the type species, P.
velutina (Mycosphaerellaceae)
Increased Renal Methylglyoxal Formation with Down-Regulation of PGC-1α-FBPase Pathway in Cystathionine γ-Lyase Knockout Mice
We have previously reported that hydrogen sulfide (H2S), a gasotransmitter and vasodilator has cytoprotective properties against methylglyoxal (MG), a reactive glucose metabolite associated with diabetes and hypertension. Recently, H2S was shown to up-regulate peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, a key gluconeogenic regulator that enhances the gene expression of the rate-limiting gluconeogenic enzyme, fructose-1,6-bisphosphatase (FBPase). Thus, we sought to determine whether MG levels and gluconeogenic enzymes are altered in kidneys of 6–22 week-old cystathionine γ-lyase knockout (CSE-/-; H2S-producing enzyme) male mice. MG levels were determined by HPLC. Plasma glucose levels were measured by an assay kit. Q-PCR was used to measure mRNA levels of PGC-1α and FBPase-1 and -2. Coupled-enzymatic assays were used to determine FBPase activity, or triosephosphate levels. Experimental controls were either age-matched wild type mice or untreated rat A-10 cells. Interestingly, we observed a significant decrease in plasma glucose levels along with a significant increase in plasma MG levels in all three age groups (6–8, 14–16, and 20–22 week-old) of the CSE-/- mice. Indeed, renal MG and triosephosphates were increased, whereas renal FBPase activity, along with its mRNA levels, were decreased in the CSE-/- mice. The decreased FBPase activity was accompanied by lower levels of its product, fructose-6-phosphate, and higher levels of its substrate, fructose-1,6-bisphosphate in renal extracts from the CSE-/- mice. In agreement, PGC-1α mRNA levels were also significantly down-regulated in 6-22 week-old CSE-/- mice. Furthermore, FBPase-1 and -2 mRNA levels were reduced in aorta tissues from CSE-/- mice. Administration of NaHS, a H2S donor, increased the gene expression of PGC-1α and FBPase-1 and -2 in cultured rat A-10 cells. In conclusion, overproduction of MG in CSE-/- mice is due to a H2S-mediated down-regulation of the PGC-1α-FBPase pathway, further suggesting the important role of H2S in the regulation of glucose metabolism and MG generation
- …