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Abstract 

Haemolysis is a very common phenomenon and is referred as the release of intracellular 

components from red blood cells to the extracellular fluid. Haemolysed samples are often rejected 

in clinics due to the interference of haemoglobin and intracellular components in laboratory 

measurements. Plasma and serum based vibrational spectroscopy studies are extensively applied 

to generate spectral biomarkers for various diseases. However, no studies have reported the effect 

of haemolysis in blood based vibrational spectroscopy studies. This study was undertaken to 

evaluate the effect of haemolysis on infrared and Raman spectra of blood plasma. In this study, 

prostate cancer plasma samples (n=30) were divided into three groups (non-haemolysed, mildly 

haemolysed and moderately hemolysed) based on the degree of haemolysis and FTIR and Raman 

spectra were recorded using high throughput (HT)-FTIR and HT-Raman spectroscopy. 

Discrimination was observed between the infrared and Raman spectra of non-haemolysed and 

haemolysed plasma samples using principal component analysis. A classical least square fitting 

analysis showed differences in the weighing of pure components in non-haemolysed and 

haemolysed plasma samples. Therefore, it is worth to consider the changes in spectral features due 

to haemolysis when comparing the results within and between experiments. 



Keywords: Haemolysis, blood plasma, FTIR spectroscopy, Raman spectroscopy, principal 

component analysis, classical least squares fitting analysis. 

1. Introduction 

Haemolysis (or hemolysis) refers to the breakdown of erythrocytes and resulting in the release of 

intracellular components into the extracellular fluid, i.e. the plasma or serum [1] . Haemolysis is 

discernible as a red colouration of the plasma or serum after centrifugation of the sample and can 

occur both in-vivo and in vitro. The upper reference limit for free haemoglobin in plasma is around 

20 mg/L [2]. Several factors causing in-vitro haemolysis are given in Table 1 [2]. Not all 

haemolysed specimens can be associated with in-vitro haemolysis because more than 50 medical 

conditions are associated with in-vivo haemolysis [3], such as cancer [4], autoimmune disorders 

[5], surgery [6]  etc. In-vivo haemolysis can be easily concealed by in-vitro haemolysis. In these 

cases, samples haemolysed because of a medical condition may be refused because haemolysis 

had been attributed to improper specimen phlebotomy, without considering the condition causing 

in-vivo haemolysis [7]. 

In-vivo haemolysis can be distinguished from in-vitro haemolysis by estimating the concentration 

of haptoglobin [8]. Haptoglobin is formed in the liver and binds to free haemoglobin released from 

in-vivo lysed red cells to prevent its toxic effects [9]. The haptoglobin levels are reduced in the 

presence of large amounts of free haemoglobin, a decrease in the concentration of serum 

haptoglobin is the most marked laboratory indicator of in-vivo haemolysis [9]. In severe cases of 

in-vivo haemolysis, haptoglobin levels may be very low or even undetectable, whereas with in-

vitro haemolysis the concentration of haptoglobin is usually not affected [8]. However, several 

studies have examined the potential of haptoglobin as a marker of in-vivo haemolysis. Varying 

degrees of sensitivity and specificity for haptoglobin have been shown depending on the cutoff 

concentration used. One study used a haptoglobin cutoff of less than 25 mg/dL and demonstrated 

83% sensitivity and 96% specificity for intravascular haemolysis [10]. Another used a haptoglobin 

cutoff of less than 28 mg/dL and noted 91.8% sensitivity and 98.4% specificity for intravascular 

haemolysis [11]. On the other hand, decreased levels of haptoglobin can occur in the absence of 

haemolysis, due to the liver cirrhosis, disseminated ovarian carcinomatosis, pulmonary 

sarcoidosis, and elevated oestrogen states [9]. 



In general, there is no gold standard test to confirm in-vivo haemolysis, and most often labs rely 

on other clinical factors (e.g. increased reticulocyte count and decreased haptoglobin) and 

correlation with other laboratory markers (e.g., complete blood count, lactate dehydrogenase and 

indirect bilirubin) in addition to a patient’s history [2,9]. 

Many laboratory chemistry tests depend on the evaluation of light that passes through a sample, 

and therefore haemolysed blood can interfere with these tests, as the red colour of haemoglobin 

can interfere with the absorption of light as it passes through a haemolysed sample [12]. In 

spectrophotometric assays, the absorption peak of oxyhaemoglobin lies between 531 and 543 nm. 

This absorption peak is relatively broad so haemolysis intervenes over many wavelengths that are 

used for the quantification of analytes [12]. Haemolysis also interferes with laboratory tests by 

releasing analytes into the serum or plasma that are elevated in concentration within the red blood 

cells compared to serum or plasma, thereby giving false concentrations of measured analytes [13].  

The application of vibrational spectroscopy (infrared and Raman spectroscopy) to generate 

spectral biomarkers of disease using biofluids such as plasma or serum is gaining increased focus. 

Infrared spectroscopy is based on the absorption of infrared radiation by the sample under study 

and the fact that molecules absorb specific frequencies of the incident light which are characteristic 

of their structure. Raman spectroscopy is based on inelastic scattering of monochromatic light, 

usually from a laser source. Many articles have been published reporting the use of Fourier 

Transform Infrared (FTIR) and Raman spectroscopy with serum and/or plasma as non-invasive 

diagnostics for various diseases, including cancers [14–17]. Despite haemolysis being very 

common in practice, no spectroscopic study has examined its effects on spectral markers and the 

concentration of analytes.  

This study was undertaken to investigate the effect of haemolysis on Raman and FTIR spectra of 

plasma in prostate cancer patient plasma samples (n = 30). A combination of ultraviolet (UV)-

Visible, high throughput (HT) - Raman and HT-FTIR spectroscopies were used to evaluate the 

spectral content of both haemolysed and non-haemolysed plasma. Significant spectral differences 

were observed in the infrared and Raman spectra of non-haemolysed and haemolysed plasma 

samples. The acquired FTIR and Raman spectra were also analysed by principal component 

analysis (PCA) and classical least squares (CLS) fitting analysis in the MATLAB environment. 



The CLS fitting analysis was employed to estimate the changes in the weighting of various analytes 

in non-haemolysed and haemolysed plasma samples.  

2. Experimental section 

2.1. Ethical approval 

Ethical approval was awarded by the Technological University Dublin Research Ethics Committee 

for the collection of blood samples from healthy donors. The prostate cancer patients used in this 

study were recruited from the Cancer Trials Ireland (formerly All Ireland Cooperative Oncology 

Research Group, ICORG) trial 08−17 which is entitled “A Prospective Phase II Dose Escalation 

Study Using intensity modulated radiotherapy (IMRT) for High Risk N0 (cancer has not spread to 

nearby lymph nodes) M0 (or elsewhere in the body) Prostate Cancer (NCT00951535)”. The 

patients were recruited for a translational study on vibrational spectroscopy for monitoring 

radiation therapy response [18]. The translational research study was approved by the St Luke’s 

Radiation Oncology Network Research Ethics Committee and all research was performed in 

accordance with relevant guidelines and regulations. Informed consent was obtained from all 

participants. Fresh whole blood was drawn into Li-heparin tubes at St. Luke`s Radiation Oncology 

Network, St. Luke’s Hospital (SLRON SLH), in Dublin, and were coded before being transferred 

to the Technological University (TU) Dublin laboratory. Plasma from prostate cancer patients were 

used to study the effect of in-vivo haemolysis on Raman and FTIR spectra of blood plasma. The 

clinical characteristics of prostate cancer patients are detailed in Table 2. Plasma from male healthy 

donor (age, 50 years) was used to study the effect of in-vitro haemolysis on Raman spectra of 

blood plasma. 

2.2. Plasma isolation 

Plasma was isolated from these blood samples by centrifugation at 3500 g for 5 minutes at 180C. 

The samples were subsequently stored at -800C prior to FTIR and Raman acquisition. 

2.3. Haemoglobin isolation 
 

A volume of 1ml of whole blood sample was centrifuged at 3500 g for 5 minutes to remove plasma. 

The pelleted red blood cells (RBCs) was purified by washing with phosphate buffer saline (PBS)  



for at least three times. The residual PBS was removed by centrifugation at 3500 g for 1 minute . 

After purification, deionised water was added to the RBCs and sonication was performed for 30 

sec to rupture the RBCs. Then, the diluted haemoglobin was further centrifuged at 3500 g for 5 

minutes to remove RBC membrane. The isolated diluted hemoglobin sample was stored at -800C 

before Raman measurements.  

2.4. Ultraviolet - visible spectroscopy 
 

UV-visible spectroscopy is generally used in analytical chemistry for the quantitative 

determination of various analytes. UV-visible spectroscopy uses light in the visible and adjacent 

ranges. In this study, free haemoglobin of the plasma samples was measured 

spectrophotometrically (Perkin Elmer Lambda 900) with water as a blank. Thirty microliters of 

plasma samples were deposited on the quartz microsample cell with 0.1mm pathlength and the 

absorbance at 414 nm were used to determine the haemolysis in the sample. The concentration of 

haemoglobin in plasma was determined using the Beer-Lambert law.  

2.5. FTIR spectroscopy 
 

The sample preparation and acquisition methodology for FTIR spectra was detailed in our previous 

paper [18]. Briefly, plasma samples stored at -80° C were thawed at room temperature and were 

diluted threefold in physiological water. A volume of 4 μL diluted plasma sample was deposited 

on a 384-well silicon plate (Bruker Optics GmbH, Ettlingen, Germany), and air-dried at room 

temperature. For each sample, 10 spots were used giving 10 instrumental replicates. The plate was 

then inserted into a high-throughput module (HTS-XT, Bruker Optics GmbH) attached to an FTIR 

spectrometer (Tensor 27, Bruker Optics GmbH). FTIR spectra were acquired in the transmission 

mode using the OPUS v6.5 software (Bruker Optics GmbH) in the wavenumber range from 4000 

to 400 cm−1, using a spectral resolution of 4 cm−1 and 32 co-additions. FTIR spectra were then 

subjected to a quality test (OPUS v6.5) and details of this test are fully described in reference [19, 

20]. Spectra that passed the quality test were pre-processed and processed in the wavenumber 

range from 800 to 4000 cm−1. 

 



2.6. Raman spectroscopy 
 

Raman spectra from liquid plasma samples were recorded using an in house developed HT-Raman 

spectroscopy method [17]. Briefly, 20 µl of liquid plasma samples were deposited on a cover glass 

bottomed 96 well plate (MatTek corporation) and Raman spectra of the plasma samples were 

acquired using a 785nm laser focused through a 10x objective (N.A. 0.25). Spectra were recorded 

using a diffraction grating ruled with 300 lines/mm giving a spectral resolution of ~2.1cm-1. 

Spectra were recorded automatically from each well where the spectrometer was programmed 

using an in-house developed high throughput macro template. Each spectrum was acquired over 

the region from 400 –1800 cm-1. Ten spectra were recorded from each sample for each patient with 

a 20 s x 2 integration time. Multiple wavenumber calibration spectra of 1,4-Bis (2-methylstyryl) 

benzene and intensity calibration spectra of National Institute of Standards and Technology (NIST) 

Standard Reference Material (SRM) no. 2241 were recorded along with each sample acquisition 

and used in spectral post-processing. 

2.7. Pure molecular reference species recording 

All pure molecular references species (Table 3) were purchased from Sigma Aldrich. These 

molecular species include proteins, lipids and other analytes which are usually found in the blood 

plasma. Moreover, previous other studies also reported the variations in most of these molecular 

species due to the effect of haemolysis [13, 21–23].  Additionally, molecular reference species of 

lipids and fatty acids were included to study their interference in the plasma spectra due to in-vivo 

haemolysis. More details of these pure molecular reference species are provided in supplementary 

material. 

Approximately 1–2 mg of each lyophilised analyte or 10 µL of liquid analyte was deposited on a 

calcium fluoride slide and Raman spectra were recorded with a 785 nm laser excitation. The laser 

was focused through a 10× objective (N.A. 0.25) using a diffraction grating ruled with a grating 

of 300 lines per mm. Five spectra per sample were recorded for the acquisition time of 10 seconds 

and 2 accumulations. FTIR spectra of all analytes were recorded using Attenuated total reflectance 

(ATR)-FTIR (Perkin Elmer). Approximately 1 mg of lyophilised analyte or 5 µL of liquid analyte 

(allowed to dry at room temperature) was placed on the ATR crystal (Diamond / Zinc Selenide 

with refractive index 2.4) and FTIR spectra were acquired in the transmission mode using the 



spectrum software and using the following conditions: wavenumber range from 4000 to 700 cm−1, 

spectral resolution of 4 cm−1, and each spectrum was averaged over 8 scans. 

2.8. Data analysis 

All spectral processing procedures were carried out using MATLAB (R2017a; Mathworks Inc., 

Natick, MA), along with in-house developed algorithms and procedures available within the PLS 

Toolbox (v 8.0.2, Eigenvector Research Inc., Wenatchee, MA). 

2.8.1. Pre-processing 

Pre-processing of FTIR spectra includes baseline correction, calculation of second derivative 

spectra and vector normalisation. Baseline correction was performed using the rubberband 

baseline subtraction [24]. Second derivative spectra were calculated using Savitsky-Golay 

algorithm [25] and a window length of 9 points. All spectra were standardized using vector 

normalization before analysis. 

The acquired Raman spectra were wavenumber calibrated relative to an in-house standard of 1,4-

Bis (2-methylstyryl) benzene using in-house developed calibration procedures [26] and the 

instrument response correction was performed using the spectrum of NIST Standard Reference 

Material (SRM) no. 2241, according to the method described [27]. Briefly, SRM 2241 emits a 

broadband luminescence spectrum when illuminated with 785 nm Raman excitation laser. The 

shape of this luminescence spectrum is represented by a polynomial expression that relates the 

relative spectral intensity to the Raman shift. This polynomial along with a standard luminescence 

spectrum can be employed to determine the spectral intensity-response correction, which is unique 

to each Raman system. The derived instrument intensity response correction can be used to obtain 

Raman spectra that are corrected for instrument dependent artifacts [27]. The wavenumber and 

instrument response corrected Raman spectra were smoothed using a Savitzky-Golay filter. The 

background and baseline correction were performed using Extended Multiplicative Scattering 

Correction (EMSC). Then, spectra were standardized using vector normalization. An example of 

intensity corrected, and pre-processed liquid plasma spectrum is shown in Figure 1. 

2.8.2. Multivariate analysis 

Pre-processed FTIR and Raman spectra were further processed with PCA and CLS fitting analysis. 



2.8.2.1. PCA 

PCA was performed with the similar approach as described earlier [18].  In brief, PCA is a 

commonly used method for multivariate data compression and visualization. It describes data 

variance by identifying a new set of orthogonal features, called principal components (PCs).  

2.8.2.2. CLS fitting analysis 

In this study, classical least squares (CLS) fitting analysis was performed on the second derivative 

FTIR spectra and vector normalised Raman spectra to estimate the relative fraction (a proxy for 

concentration) of reference spectra (of pure components) within a sample spectrum. The use of 

CLS fitting analysis to determine the relative concentrations of cellular components have been 

reported previously [28,29]. The pure components used in this study are given in Table 2. CLS is 

an exploratory method that assumes that any complex spectrum is the linear sum of contributions 

from spectra of pure components that contribute to the spectrum as described in the following 

equation [30]: 

                                                  𝑆 =  𝑎!𝐶! + 𝑎"𝐶" +⋯+ 𝐸                                                                 

 Where S represents a sample spectrum, a1 and a2 are component spectra and C1 and C2 are the 

weights or concentrations assigned to each component spectrum. In the case of a Raman or FTIR 

spectrum, not all contributing pure components are known. Therefore, an error or residual, E, in 

the fitting estimation will be observed that will equate to the difference between the sample 

spectrum and the sum of the component spectra: 

                                                𝐸# = 𝑆# −  (𝑎!#𝐶! + 𝑎"#𝐶" + 𝑎$#𝐶$)                                                                    

Where E j is the error associated with the intensity of the j-th wavenumber. Applying CLS 

minimizes the error in fitting the sample spectrum, S. The minimum error occurs when the 

differential of the sum of squared errors is equal to zero.   

                                         
(&(∑ #(!

")

&*#
= & ∑ (+!,		(.#!*#/."!*"/.$!*$)	")!

&*#
	= 0                                                         

Differentiating with respect to each of the component will give the above equation and using the 

method of simultaneous equations the weighting components can be calculated. Alternatively 



using matrix methods and the matrix of weighting coefficients can be solved for using the 

following equation. 

                                                    [𝐶] = 	 [𝐴]	[𝑎]0[𝑎𝑎0],!	                                                                                      

where a is a component of sample spectra. 
 

3. Results and discussion 

3.1. Haemoglobin spectra 
 

Three different types of  plasma samples were observed in our plasma biobank (Figure 2). The 

normal plasma sample is clear and pale yellow in colour (Figure 2C). The haemolysed plasma 

sample is pale red in colour (Figure 2A)  and the lipemic plasma sample is white in colour (Figure 

2B). Lipemia is a turbidity of the sample caused by aggregation of lipoprotein particles 31. 

Figure 3 shows a representative UV-Visible absorption spectrum of haemoglobin recorded from 

the haemolysed prostate cancer plasma sample. The absorption bands at 414 cm-1,  546 cm-1 and 

571 cm-1 indicates the presence of oxyhaemoglobin. Figure 4 shows the FTIR absorption spectrum 

recorded from the haemoglobin standard (Sigma Aldrich). As haemoglobin is a protein, the FTIR 

absorption spectrum contains amide I band (between 1600 and 1700 cm-1), amide II band (between 

1510 and 1580 cm-1), amide III band (between 1300 and 1400 cm-1), amide A band (between 3300 

and 3500 cm-1). Figure 5A, 5B and 5C shows the Raman spectra recorded from the lyophilised 

haemoglobin standard, diluted haemoglobin standard and the haemoglobin isolated from blood 

respectively. The Raman spectra acquired from the lyophilised haemoglobin standard gave a 

fluorescence signal because of the bright red colour of haemoglobin. However, the fluorescence 

signal was not observed in Raman spectra from diluted and isolated haemoglobin. This might be 

due to the reduction of red colour of haemoglobin by diluting with deionised water. The Raman 

spectrum from diluted haemoglobin and isolated haemoglobin contains protein related bands at 

750 cm-1, 1002 cm-1, 1035 cm-1, 1125-1150 cm-1, 1210 cm-1 (phenylalanine), 1170 cm-1 (tyrosine), 

1035 cm-1,  1230 cm-1 -1300 cm-1 (Amide III), 1480 cm-1 – 1580 cm-1 (Amide III),  and 1600 - 

1660 cm-1 (phenylalanine, tyrosine, Amide I).  These bands are more prominent in diluted 

haemoglobin compared to isolated haemoglobin from RBC. 



3.2. Plasma categorization based on haemolysis 
 

Specimens were categorized according to the haemoglobin concentration into three groups: 

• Group 1 (0 - 0.1g/L), non-haemolysed (n=12); 

• Group 2 (0.20 - 0.50 g/L), mildly haemolysed (n=10); 

• Group 3 (0.50 - 0.93 g/L), moderately haemolysed (n=8). 

 

The results were analysed to determine if non-haemolysed, mildly haemolysed and moderately 

haemolysed samples had a significant impact on the analyte concentrations estimated by CLS 

fitting analysis. The median free haemoglobin concentrations for groups 1, 2 and 3 were measured 

as 0.02, 0.44 and 0.71 g/L respectively. At free haemoglobin concentration of 0.2 g/L, haemolysis 

was visible by the light red colour of the plasma. The haemolysed plasma samples appeared to be 

more turbid compared to non-haemolysed plasma samples. The increase in turbidity in haemolysed 

samples may be due to hyperlipidemia. It has been reported that hyperlipidemia is associated with 

increased haemolysis [32]. It is postulated that enhanced lipid concentration changes the lipid 

content of the erythrocyte membrane, resulting in increased erythrocyte fragility and subsequent 

leakage of cellular content into the plasma [32].  

3.3. Comparison of spectral features of non-haemolysed and haemolysed plasma samples 
 

Figure 6 shows the mean FTIR spectra of non-haemolysed and haemolysed plasma obtained from 

the prostate cancer patients. To explain the differences between each group, difference spectra 

were computed by subtracting the spectra of haemolysed plasma samples from the spectra of non-

haemolysed plasma samples. The first panel in Figure 7 shows the difference FTIR spectra 

obtained from moderately haemolysed and mildly haemolysed plasma samples. The second panel 

shows the difference FTIR spectra obtained from mildly haemolysed and non-haemolysed plasma 

samples and the third panel shows the difference FTIR spectra obtained from moderately 

haemolysed and non-haemolysed plasma samples. 

Major differences were observed in the region around  1550 cm-1 (Amide II) [20] , 1660 cm-1 

(Amide I) [20], 1740-1760 cm-1 (stretching vibrations of (C=O) of fatty acids, triglycerides, and 



cholesterol esters) [33], 2800-2950 cm-1 (stretching vibrations of (CH2/CH3) of lipids fatty acids, 

triglycerides and proteins) [33], 3300 cm-1 (Amide A) [20]  and 3400-3600 cm-1 (OH stretch) [34] 

between non-haemolysed and haemolysed plasma groups. The increase in fatty acids (1740-1760 

cm-1), lipids (2800-2960 cm-1) and OH stretch (3400-3600 cm-1) and the decrease in glycogen, 

nucleic acids (1000-1100 cm-1) [33,35],  amide II (1550 cm-1), amide I (1660 cm-1) and amide A 

(3300 cm-1) were observed with an increase in haemolysis. The decrease in amide II, amide I and 

amide A suggests the decrease in protein content with an increase in haemolysis and the increase 

in fatty acids, lipids and OH stretch suggest the increase in lipids with an increase in haemolysis. 

The increase in lipids and fatty acids in haemolysed plasma samples may indicate in-vivo 

haemolysis [32]. As mentioned earlier, the haemolysed plasma specimens appeared to be more 

turbid compared to non-haemolysed plasma samples due to hyperlipidemia. The increase in lipid 

concentration with an increase in haemolysis has also been reported previously [32]. 

Figure 8 shows the mean Raman spectra of non-haemolysed and haemolysed plasma obtained 

from the prostate cancer patients. The first panel in Figure 9 shows the difference Raman spectra 

obtained from moderately haemolysed and mildly haemolysed plasma samples. The second panel 

shows the difference Raman spectra obtained from mildly haemolysed and non-haemolysed 

plasma samples and the third panel shows the difference Raman spectra obtained from moderately 

haemolysed and non-haemolysed plasma samples. Major intensity related differences were 

observed in the region around 877 cm−1, 881 cm−1, 1006 cm−1, 1085 cm−1, 1210 cm−1, 1270 cm−1, 

1302 cm−1, 1345 cm−1, 1450 cm−1, 1528 cm−1, and 1660 cm−1. The bands corresponding to 

phenylalanine (1006 cm−1 and 1210 cm−1) [36] increased with increase in haemolysis. The increase 

in the amide linkage bands (1302, 1340 cm−1) [37] was observed in non-haemolysed plasma 

compared to haemolysed plasma. The CH2 deformation (1340 cm−1) [37] bands were decreased 

with increase in haemolysis. The bands corresponding to cholesterol (881cm−1 and 1450 cm−1) [38] 

and triglycerides (877 cm−1, 1270 cm−1 and 1450 cm−1) [38] were increased with increase in 

haemolysis. This increase in lipid profile with an increase in haemolysis was also observed in the 

FTIR spectral analysis. 

 



3.4. Multivariate analysis 

3.4.1. PCA  
 

PCA was performed on second derivative of the mean FTIR spectra by patient, using the 

wavenumber range of 4000-800 cm-1. PCA was carried out with 10 PCs and the first 2 PCs 

accounted for ∼91% of the total percentage variance. The first two PCs were used to visualize the 

classification between the groups. The scatter plot revealed three well differentiated clusters 

between the analysed groups (Figure 10A). 

The PCA analysis showed clear discrimination between the FTIR spectra of non, mildly and 

moderately haemolysed plasma samples. PC1 showed the discrimination between the FTIR spectra 

of non and mild haemolysed plasma samples and moderate haemolysed plasma samples. PC1 

shows positive band associated with proteins (1657 cm-1) in the moderately haemolysed plasma 

group and negative bands associated with glycogen, nucleic acids (1040 cm-1, 1063 cm-1, 1090 cm-

1 and 1120 cm-1), lipids, triglycerides and fatty acids (1744 cm-1, 2853 cm-1, 2926 cm-1 and 2963 

cm-1) in the non and mildly haemolysed plasma groups. PC2 showed the discrimination between 

the FTIR spectra of non-haemolysed and mild haemolysed plasma samples. PC2 shows positive 

bands at 1040 cm-1, 1120 cm-1 and 1640 cm-1 in the mildly haemolysed plasma group and negative 

bands at 1744 cm-1, 2853 cm-1, 2926 cm-1 and 2963 cm-1 in the non-haemolysed plasma group. 

The positive bands in PC2 are assigned to glycogen, RNA and protein and negative bands are 

assigned to lipids, triglycerides and fatty acids.  The PCA analysis showed the main discriminating 

features between non-haemolysed and haemolysed plasma samples are related to glycogen, nucleic 

acids, proteins, fatty acids, triglycerides and lipids. The FTIR difference spectrum analysis also 

showed similar discriminating spectral features between the non-haemolysed, mild and moderate 

haemolysed plasma samples. 

Figure 11 shows the results of PCA analysis performed on the vector normalised Raman spectra 

of non-haemolysed and haemolysed plasma groups. The first two PCs accounted for ∼58% of the 

total percentage variance and the scatter plot revealed overlapped clusters between the analysed 

groups. Only PC1 showed the discrimination between the Raman spectra of non and mild 

haemolysed plasma samples and moderate haemolysed plasma samples. PC1 has positive bands 

at 1003 cm-1, 1080 cm-1, 1155 cm-1, 1430 cm-1 and 1650 cm-1 in the non and mildly haemolysed 



plasma groups and negative bands at 1007 cm-1, 1210 cm-1, 1260 cm-1, 1346 cm-1 1460 cm-1 and 

1660 cm-1 in the moderately haemolysed plasma group. The positive bands assigned to proteins, 

amino acids, carotenoids and lipids, and negative bands related to amino acids, proteins and lipids. 

The PCA showed proteins and lipids are the major discriminating features between the Raman 

spectra of plasma from non and mildly haemolysed versus moderately haemolysed patient groups. 

Similar discriminating features were also observed in the difference spectrum analysis of Raman 

spectra from non-haemolysed and haemolysed plasma groups. 

3.4.2. CLS fitting analysis 
 

CLS fitting analysis was performed to examine the alterations in the weighting of analytes in 

Raman and FTIR spectra with variable haemolysis. Significance testing was performed on the 

identified plasma analytes using two-tailed students t-tests with the significance level of p≤0.05, 

0.01 and 0.001. Figure 12 shows the results of CLS fitting analysis performed on the non-

haemolysed and haemolysed plasma second derivative FTIR spectra. In particular a differentiation 

in the weighting of albumin, phosphatidyl-ethanolamine (p-ethanolamine), uric acid, ceramide, 

thymidine, ubiquitin, triglyceride, Interleukin-6 and Interleukin-8 were observed between the 

FTIR spectra of non-haemolysed and haemolysed plasma samples. An increase in the weighting 

of albumin, ceramide, uric acid and ubiquitin was observed with an increase in haemolysis. 

Conversely a decreased weighting of thymidine and interleukin-6 was observed with increase in 

haemolysis. Similarly, a decreased weighting of triglyceride was observed in the haemolysed 

samples compared to non-haemolysed plasma samples. The increase in ceramide and p-

ethanolamine suggests an increase in lipid concentration with increase in haemolysis. An increased 

concentration of albumin [13] and ubiquitin [39] with an increase in haemolysis has also been 

reported previously. 

Figure 13 shows the results of CLS fitting analysis performed on the Raman spectra from non-

haemolysed and haemolysed plasma. Significant differences were observed in the weighting of 

uric acid, albumin, insulin, p-ethanolamine, creatinine, interleukin-6, RNA, urea and thymidine. 

A decreased weighting for uric acid and urea was observed with increase in haemolysis. A 

decreased concentration of uric acid with increase in haemolysis has also been reported previously 

[21] and may arise from a premature decomposition of haemoglobin [21]. Conversely an increased 



weighting of RNA and Interleukin-6 was observed with increase in haemolysis. Kirschner et al. 

reported an increase in the micro RNA levels in haemolysed plasma specimens [23]. The weighting 

of insulin within Raman spectra was decreased in mildly haemolysed samples and increased in 

moderately haemolysed plasma samples. The weighting of albumin and creatinine was decreased 

in moderately haemolysed samples compared to non and mildly haemolysed plasma samples. 

Variations in the weighting of albumin, uric acid, p-ethanolamine, interleukin-6 and thymidine 

were observed in both FTIR and Raman spectra of non-haemolysed and haemolysed plasma 

samples. Increased weighting of p-ethanolamine was observed in both FTIR and Raman spectral 

analysis. The FTIR spectral analysis showed an increased weighting of albumin with an increase 

in haemolysis but a slightly decreased level of albumin was observed in the Raman spectra of the 

moderately haemolysed plasma samples. A decreased weighting of uric acid, thymidine and 

interleukin-6 was observed in the FTIR spectral analysis with an increase in haemolysis. 

Conversely, an increased weighting of uric acid, thymidine and interleukin-6 levels were observed 

in the Raman spectral analysis. The differences in the CLS fitting analysis results of FTIR and 

Raman spectra may be due to the employment of different pre-processing and sample preparation 

methods. Second derivative FTIR spectra were used in this analysis, second derivative spectra 

allow more distinct identification of small and adjacent lying absorption peaks which are not 

clearly visible in the original spectrum. The FTIR spectra were recorded from diluted and dried 

plasma samples and Raman spectra were recorded from liquid plasma samples. Differences in the 

sample preparation methods might also affect the identification of plasma analytes. However, 

further studies would be required to confirm the variation in plasma analytes due to the different 

sample preparation methods. 

4. Interpatient variability 

The above studies were carried out on plasma samples obtained from various prostate cancer 

patients. To avoid any interpatient variability, plasma from a healthy control subject was spiked 

with increasing concentrations of diluted haemoglobin (extracted from whole blood), 0.44 g/L 

(mildly haemolysed), 0.93 g/L (moderately-haemolysed) and 1.31g/L (grossly-haemolysed). 

Figure 14 shows the mean spectra of non-haemolysed and in-vitro haemolysed plasma samples. 

Intensity related differences were observed across the spectra in the analysed plasma groups. A 

decrease in the bands around 1007 cm-1, 1450 cm-1 and 1660 cm-1 were observed with an increase 



in in-vitro haemolysis. These spectral features were increased with an increase in haemolysis in 

the Raman spectra of plasma from prostate cancer patients and could originate in in-vivo 

haemolysis or interpatient variability. Figure 15 shows the PCA scatter plot for non-haemolysed 

and in-vitro spiked-haemolysed plasma samples. The first two PC’s accounted for ∼25% of the 

total percentage variance and the scatter plot revealed overlapped clusters between the analysed 

groups. This suggests that there are no significant discriminating spectral features between the 

non-haemolysed and in-vitro haemolysed plasma specimens. 

The CLS fitting analysis performed on the in-vitro haemolysed plasma samples showed 

differences in the weighting of uric acid, albumin, insulin, p-ethanolamine, Interleukin-6, RNA, 

urea and thymidine (Figure 16). A decrease in insulin concentration was observed with an increase 

in haemolysis. This might be attributable to the previously observed release of proteolytic enzymes 

during hemolysis that destroys small peptides such as insulin, gastrin etc [22]. However, this trend 

was not observed in prostate cancer plasma samples. The increased concentration of urea in 

haemolysed samples was reported previously [40] and this effect might be due to the cellular 

release of urea into plasma during haemolysis [40]. However, in this study, the concentration of 

urea was increased gradually from non-haemolysed through mildly haemolysed up to moderately 

haemolysed samples and then decreased in grossly haemolysed plasma samples. Conversely, a 

decreased weighting of urea was observed in prostate cancer plasma samples with an increase in 

haemolysis. The decreased levels of uric acid [13], creatinine [13], insulin [22] and increased levels 

of urea [40], micro RNA [23] and interleukins [41] were reported with an increase in haemolysis. 

Similar trends were observed in this study up to moderately haemolysed samples but a deviation 

in this trend was observed in grossly haemolysed samples. This might be due to dilution or to 

interference from the bright red colour of haemoglobin as more haemoglobin was added to the 

plasma to produce the grossly haemolysed plasma sample. This results in dilution and alteration 

of analytes present in the plasma sample. Previous studies have also reported variations in severely 

haemolysed plasma samples due to dilution [13, 40]. 

 The weighting of uric acid, Interleukin-6 and RNA were consistent in both in-vitro haemolysed 

and prostate cancer plasma samples and the weighting of urea, insulin, p-ethanolamine, thymidine 

and creatine were inconsistent between the in-vitro and prostate cancer plasma samples. Consistent 

weighting of pure components in in-vitro haemolysed samples and prostate cancer haemolysed 



plasma samples suggests the interference of haemoglobin colour and intercellular components of 

RBC in the weighing of plasma analytes. Inconsistent weighting of pure components in in-vitro 

haemolysed and prostate cancer haemolysed plasma samples might be due to in-vivo haemolysis 

or due to the development of cancer.  

5. Conclusions 
 

Haemolysis, in-vitro or in-vivo, can affect the concentration of analytes present in the blood 

plasma and serum. Haemolysis can interfere in the quantification of several analytes in three 

different ways. The first one is the interference of the red coloration of haemoglobin with the 

absorption of light as it passes through a sample. The second interference is by releasing analytes 

into the serum or plasma that are in high concentration within the red blood cells and the third 

interference is by increasing lipid and fatty acid concentration in in-vivo haemolysis. Many studies 

have reported the interference of haemoglobin in various biochemical assays, including UV-visible 

spectroscopy. This study aimed to investigate the changes in the IR and Raman spectra of non-

haemolysed and haemolysed plasma samples. The mean spectra showed more changes in the FTIR 

spectral features of non-haemolysed and haemolysed patient plasma groups compared to the 

Raman spectral features. The increased haemolysis with an increase in the lipid content suggests 

an in-vivo haemolysis in the prostate cancer plasma samples. The PCA analysis performed on 

FTIR spectra showed a good separation of the plasma groups compared to the PCA performed on 

Raman spectra. This suggest that FTIR spectroscopy is a preferred method for the analysis of 

haemolysed samples. Finally, the CLS fitting analysis suggested significant alterations in the 

weighing of analytes in FTIR and Raman spectra of non-haemolysed and haemolysed patient 

plasma groups. The Raman spectroscopy study on in-vitro haemolysed samples showed minor 

changes in the spectral features of non-haemolysed and haemolysed plasma specimens and CLS 

fitting analysis showed similar changes in the weighting of some pure components as observed in 

the Raman spectra of plasma from prostate cancer patients.  

This study suggests that the FTIR spectra show more significant changes in the spectral features 

and in the weighting of pure components due to haemolysis compared to the Raman spectra. 

However, further FTIR studies should be performed on in-vitro haemolysed samples to confirm 

these results. Both in-vitro and in-vivo haemolysis is a common phenomenon and rejecting these 



samples could limit the diagnostic performance of Raman and FTIR spectroscopy. However, when 

including haemolysed samples in clinical spectroscopy studies, it is important to consider any 

changes in FTIR and Raman spectral features due to haemolysis when comparing results within 

and between experiments. Differences in the spectral features due to haemolysis will be observed 

within the patient group but most likely, these differences will be minor when compared between 

patient groups, for example control and cancer cases. However, further studies are needed to 

confirm this. 

This is the first study to report the effect of haemolysis on infrared and Raman spectra of blood 

plasma. This study was performed on a limited sample set and validation of these results on a 

larger cohort will be necessary to confirm the effect of in-vitro and in-vivo haemolysis on FTIR 

and Raman spectra of blood plasma. Future work should also involve biological assays showing 

proteins, lipids, circulating nucleic acids and other analyte levels to corroborate the findings of the 

CLS fitting analysis. 
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Tables 

  

Table 1: Factors causing in vitro haemolysis [2]. 

During specimen collection After Specimen collection 

Strong aspiration while puncturing superficial 

veins 

Vigorous shaking of collected sample 

Aspiration with large needles causes higher 

haemolysis because of an increase in the flow-

rate, flow speed and turbulence. 

Centrifugation of sample before completion of 

coagulation 

Partial blockage of a venous or arterial catheter 

causes strong aspiration of the sample collected 

with a syringe. 

Centrifugation of partially coagulated samples 

from patients on anticoagulants 

Specimen collection and subsequent splitting 

into multiple tubes with a syringe. 

Positive or negative pressure in sample 

collection tube 

 Dilution of blood with hypotonic solutions 

 Freeze thawing of whole blood 

 Storage or transportation of collected specimen 

over several days at ambient temperatures 

 

 

 

 

 

 

 

 

 

 



 

Table 2: Clinical characteristics of prostate cancer patients used in the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Non-haemolysed Mildly-haemolysed Moderately-haemolysed 

Number of subjects 12                                   10 08 
Sex M M M 

Age (Years) 
Mean 

Median 
Range 

 
70.4 
69.5 

58 - 79 

 
67.1 
67 

58 - 76 

 
74.1 
74 

70 - 79 
PSA (ng/ml) 

Mean                           
Median 
Range 

 
14.38 
10.95 

1.55 – 40.04 

 
17.9 
7.57 

4 – 62 

 
13.7 
9.8 

6.8 – 26.5 
T stage 

T2 
T3 

 
04 (33.3%) 
 08 (66.6%) 

 
03 (30%) 
07 (70%) 

 
01 (12.5%) 
07 (87.5%) 

Gleason score 
7 
8 
9 

 
   04 (33.3%)                            

06 (50%) 
   02 (16.6%) 

 
04 (40%) 
04 (40%) 
02 (20%) 

 
04 (50%) 
02 (25%) 
02 (25%) 



 

 

Table 3: Pure molecular reference species used in haemolysis study 

Category Pure components  

Protein and related 
compounds 

Apolipoprotein E4, Albumin, Haemoglobin 
Interleukin-6, Interleukin-8 and Ubiquitin 

 

Lipids and Fatty acids 

Arachidonic acid, Cholesterol, Ceramide 

Linolenic acid, Linoleic acid, 

Oleic acid, Triglyceride, polyunsaturated fatty acid 
(PUFA), 

Sphingomyelin, 

phosphatidylcholine, phosphatidylethanolamine, 

phosphatidylserine, prostaglandin E1, 

phosphatidylinositol 

 

Nucleic acids and 
related compounds DNA, RNA, Thymidine  

Metabolism and others 
Glucose, Glycogen, Creatinine, Uric acid, Urea, 

Insulin and β-carotene 

 

 

 

 

 

 

 

 

 

 

 

 



Figures      

                                            

           

Figure 1: Mean and standard deviation of instrument response corrected and pre-processed liquid 
plasma Raman spectrum. 

                      

 

Figure 2: Three different types of liquid plasma samples in plasma biobank. 

 



 

   Figure 3: UV-VIS absorption spectrum of oxyhaemoglobin 

 



  

Figure 4: Mean and standard deviation of  FTIR absorption spectrum of haemoglobin. 
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Figure 5: Mean and standard deviation Raman spectrum of (A) haemoglobin standard (B) diluted 

haemoglobin standard and (C) haemoglobin isolated from blood.  



 

Figure 6: Mean FTIR spectra of non-haemolysed, mildly haemolysed and moderately haemolysed 

plasma samples. 

 

 

 

 

 

       

 

 

 

      

 



                      

Figure 7: Difference FTIR spectra of non-haemolysed and haemolysed plasma groups. Difference 

spectra were computed by subtracting the mean FTIR spectra of haemolysed plasma from the mean 

FTIR spectra of non-haemolysed spectra. 

 

 

 

 

 

 



                

Figure 8: Mean Raman spectra of non-haemolysed, mildly-haemolysed and moderately-

haemolysed plasma samples. 

 

 

 

 

 

 

 

 

 

 

 

 



                     

Figure 9: Difference Raman spectra of non-haemolysed and haemolysed plasma groups. 

Difference spectra were computed by subtracting the mean Raman spectra of haemolysed plasma 

from the mean Raman spectra of non-haemolysed spectra. 
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Figure 10: PCA for FTIR spectra of non-haemolysed, mildly-haemolysed and moderately-

haemolysed plasma samples. (A) Score plots are shown for patients at non-haemolysed plasma 

(blue), mildly-hemolysed plasma (red), and moderately-hemolysed plasma (yellow (B) PC-1 and 

PC-2 loading plots for regions 800 – 1800 cm-1 and 2800 – 3100 cm-1. Covariance ellipse (95% 

confidence) are shown for each class. 
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Figure 11: PCA for Raman spectra of non-haemolysed, mildly-haemolysed and moderately-

haemolysed plasma samples. (A) Score plots are shown for patients at non-haemolysed plasma 

(blue), mildly-hemolysed plasma (red), and moderately-hemolysed plasma (yellow (B) PC-1 and 

PC-2 loading plots for regions 600 – 1800 cm-1. Covariance ellipse (95% confidence) are shown 

for each class. 



 

Figure 12: Relative concentrations of pure molecular reference species from least squares fit of 

FTIR spectra of non-haemolysed and haemolysed prostate cancer plasma samples. Error bars 

represent the standard error. Significance shown by (*, **, and ***) indicates the significance of 

p≤0.05, p≤0.01 and p≤0.001 respectively. 



 

Figure 13: Relative concentrations of pure molecular reference species from least squares fit of 

Raman spectra of non-haemolysed and haemolysed prostate cancer plasma samples. Error bars 

represent the standard error. Significance shown by (*, **, and ***) indicates the significance of 

p≤0.05, p≤0.01 and p≤0.001 respectively. 

 

 

 

 

 

 

 

 

 

 



 

Figure 14: Mean Raman spectra of non-haemolysed and in vitro haemolysed plasma samples. 

 

 

 



 

Figure 15: PCA scatter plot for Raman spectra of non-haemolysed and in vitro haemolysed plasma 

samples. Covariance ellipse (95% confidence) are shown for each class. 

 

 

 



 

Figure 16: Relative concentrations of pure molecular reference species from least squares fit of 

Raman spectra of non-haemolysed and in vitro haemolysed plasma samples. Error bars represent 

the standard error. Significance shown by (*, **, and ***) indicates the significance of p≤0.05, 

p≤0.01 and p≤0.001 respectively. 

 

 

 

 

 

 

 

 

 

 



Supplementary material 

Table S1: Details of pure molecular reference species used in this study. 

 

SN Component name Company Product number State 

Protein and related species 

1 Albumin Sigma Aldrich A7030 Powder 

2 Haemoglobin Sigma Aldrich H7379 Powder 

3 Interleukin-6 Sigma Aldrich I13965 Powder 

4 Interleukin-8 Sigma Aldrich I-1645 Powder 

5 Ubiquitin Sigma Aldrich U6253 Powder 

6 Apolipoprotein E4 Sigma Aldrich A3234 Powder 

Nucleic acids and nucleobases 

7 RNA Sigma Aldrich R6750 Powder 

8 DNA Sigma Aldrich D-1626 Powder 

9 Thymidine Sigma Aldrich T1895 Powder 

Lipids, fatty acids and related species 

10 Ceramide Sigma Aldrich 22244 Powder 

11 Cholesterol Sigma Aldrich C3045 Powder 

12 Linoleic acid Sigma Aldrich L1376 Liquid 

13 Linolenic acid Sigma Aldrich L2376 Liquid 

14 Oleic acid Sigma Aldrich O1008 Liquid 

15 L-α-Phosphatidylcholine Sigma Aldrich L4129 Powder 

16 L-α-Phosphatidylserine Avanti 8703363C Liquid 

17 L-α-Phosphatidylinositol Sigma Aldrich P-6636 Powder 

18 L-α-Phosphatidylethanolamine Sigma Aldrich P-7693 Powder 

19 Prostaglandin E1 Sigma Aldrich P5515 Liquid 

20 PUFA SUPELCO 47015-U Liquid 

21 Sphingomyelin Sigma Aldrich S0756 Powder 

22 Triglyceride mixture Sigma Aldrich 17811-1AMP Powder 

23 Arachidonic acid Sigma Aldrich 10931 Liquid 



 

Other metabolites 

24 β-Carotene Sigma Aldrich C4582 Powder 

25 Urea Sigma Aldrich U4884 Powder 

26 Uric acid Sigma Aldrich U2625 Powder 

27 Creatinine Sigma Aldrich C4255 Powder 

28 Glucose Sigma Aldrich G8270 Powder 

29 Glycogen Sigma Aldrich G0885 Powder 

30 Insulin Sigma Aldrich I2643 Powder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S1: Raman spectrum of pure molecular reference species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  



                                 

Figure S2: FTIR spectrum of pure molecular reference species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

                                                                

 

 

 

 

 

 

 

                                 

                                      

 

 

 

 

 

 

 
 

 


	Effect of hemolysis on Fourier transform infrared and Raman spectra of blood plasma
	Authors

	Microsoft Word - Haemolysis manuscript_Final.docx

