6,135 research outputs found
Time-dependent Kohn-Sham theory with memory
In time-dependent density-functional theory, exchange and correlation (xc)
beyond the adiabatic local density approximation can be described in terms of
viscoelastic stresses in the electron liquid. In the time domain, this leads to
a velocity-dependent xc vector potential with a memory containing short- and
long-range components. The resulting time-dependent Kohn-Sham formalism
describes the dynamics of electronic systems including decoherence and
relaxation. For the example of collective charge-density oscillations in a
quantum well, we illustrate the xc memory effects, clarify the dissipation
mechanism, and extract intersubband relaxation rates for weak and strong
excitations.Comment: 4 pages, 4 figure
On the problem of mass-dependence of the two-point function of the real scalar free massive field on the light cone
We investigate the generally assumed inconsistency in light cone quantum
field theory that the restriction of a massive, real, scalar, free field to the
nullplane is independent of mass \cite{LKS}, but the
restriction of the two-point function depends on it (see, e.g., \cite{NakYam77,
Yam97}). We resolve this inconsistency by showing that the two-point function
has no canonical restriction to in the sense of distribution theory.
Only the so-called tame restriction of the two-point function exists which we
have introduced in \cite{Ull04sub}. Furthermore, we show that this tame
restriction is indeed independent of mass. Hence the inconsistency appears only
by the erroneous assumption that the two-point function would have a
(canonical) restriction to .Comment: 10 pages, 2 figure
A novel method for unambiguous ion identification in mixed ion beams extracted from an EBIT
A novel technique to identify small fluxes of mixed highly charged ion beams
extracted from an Electron Beam Ion Trap (EBIT) is presented and practically
demonstrated. The method exploits projectile charge state dependent potential
emission of electrons as induced by ion impact on a metal surface to separate
ions with identical or very similar mass-to-charge ratio.Comment: 8 pages, 5 figure
Estimation of carrier life time from intrinsic photoluminescence of ZnO
Comprehensive knowledge of the optical properties, particularly of the room
temperature (RT) photoluminescence (PL), of ZnO is essential for the future employment of this wideband
gap (~3.3 eV at 300 K) II-VI compound semiconductor in photonic and optoelectronic device
structures [1]. Hence, vigorous research activities on ZnO thin films, epilayers, and crystals took place
during the last two decades, encompassing a vast variety of effects and phenomena such as birefringence,
photocurrent, PL including sub-band gap emission, reflectance, transmittance, excitonic properties,
Raman modes, and absorption edge steepness [1-4]. However, despite that large body of knowledge and
its essential importance for light emitting processes, a discussion of the ZnO PL lineshape is not found
in the literature [5]
Degenerate ground states and nonunique potentials: breakdown and restoration of density functionals
The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of
quantum mechanics, and constitutes the basis for the very successful
density-functional approach to inhomogeneous interacting many-particle systems.
Here we show that in formulations of density-functional theory (DFT) that
employ more than one density variable, applied to systems with a degenerate
ground state, there is a subtle loophole in the HK theorem, as all mappings
between densities, wave functions and potentials can break down. Two weaker
theorems which we prove here, the joint-degeneracy theorem and the
internal-energy theorem, restore the internal, total and exchange-correlation
energy functionals to the extent needed in applications of DFT to atomic,
molecular and solid-state physics and quantum chemistry. The joint-degeneracy
theorem constrains the nature of possible degeneracies in general many-body
systems
Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro.
BACKGROUND: Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. METHODS: To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin and the polycation transduction enhancer Transfectam. The EGFP-positive transduced cells were then enriched by flow cytometry. RESULTS: More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. CONCLUSION: The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients own skeletal myoblasts
C in intense femtosecond laser pulses: nonlinear dipole response and ionization
We study the interaction of strong femtosecond laser pulses with the C
molecule employing time-dependent density functional theory with the ionic
background treated in a jellium approximation. The laser intensities considered
are below the threshold of strong fragmentation but too high for perturbative
treatments such as linear response. The nonlinear response of the model to
excitations by short pulses of frequencies up to 45eV is presented and analyzed
with the help of Kohn-Sham orbital resolved dipole spectra. In femtosecond
laser pulses of 800nm wavelength ionization is found to occur multiphoton-like
rather than via excitation of a ``giant'' resonance.Comment: 14 pages, including 1 table, 5 figure
Intrinsic photoluminescence stokes shift in thin-film cadmium sulfide
Exciting a semiconductor through light absorption produces photoluminescence (PL).
In general, the emitted energy is lower than the energy absorbed. The phenomenon, first discovered
in the nineteenth century, is known as Stokes shift energy [1]. The change in energy (AS t o k e s), crucial
for the information about the phonon relaxation in the material and with importance in light emitting
devices, has not been investigated experimentally very systematically [2]. In this project, we present the
observation of the intrinsic photoluminescence Stokes shift in a semiconductor
Time-dependent electron transport through a strongly correlated quantum dot: multiple-probe open boundary conditions approach
We present a time-dependent study of electron transport through a strongly
correlated quantum dot. The time-dependent current is obtained with the
multiple-probe battery method, while adiabatic lattice density functional
theory in the Bethe ansatz local-density approximation to the Hubbard model
describes the dot electronic structure. We show that for a certain range of
voltages the quantum dot can be driven into a dynamical state characterized by
regular current oscillations. This is a manifestation of a recently proposed
dynamical picture of Coulomb blockade. Furthermore, we investigate how the
various approximations to the electron-electron interaction affect the
line-shapes of the Coulomb peaks and the I-V characteristics. We show that the
presence of the derivative discontinuity in the approximate
exchange-correlation potential leads to significantly different results
compared to those obtained at the simpler Hartree level of description. In
particular, a negative differential conductance (NDC) in the I-V
characteristics is observed at large bias voltages and large Coulomb
interaction strengths. We demonstrate that such NDC originates from the
combined effect of electron-electron interaction in the dot and the finite
bandwidth of the electrodes.Comment: 10 pages, 7 figure
- …