133 research outputs found

    Short peptides in minimalistic biocatalyst design

    Get PDF
    We review recent developments in the use of short peptides in the design of minimalistic biocatalysts focusing on ester hydrolysis. A number of designed peptide nanostructures are shown to have (modest) catalytic activity. Five features are discussed and illustrated by literature examples, including primary peptide sequence, nanosurfaces/scaffolds, binding pockets, multivalency and the presence of metal ions. Some of these are derived from natural enzymes, but others, such as multivalency of active sites on designed nanofibers, may give rise to new features not found in natural enzymes. Remarkably, it is shown that each of these design features give rise to similar rate enhancements in ester hydrolysis. Overall, there has been significant progress in the development of fundamental understanding of the factors that influence binding and activity in recent years, holding promise for increasingly rational design of peptide based biocatalysts

    Sequence adaptive peptide-polysaccharide nanostructures by biocatalytic self-assembly

    Get PDF
    Coassembly of peptides and polysaccharides can give rise to the formation of nanostructures with tunable morphologies. We show that in situ enzymatic exchange of a dipeptide sequence in aromatic peptide amphiphiles/polysaccharide coassemblies enables dynamic formation and degradation of different nanostructures depending on the nature of the polysaccharide present. This is achieved in a one-pot system composed of Fmoc-cysteic acid (CA) and Fmoc-lysine (K) plus phenylalanine amide (F) in the presence of thermolysin that, through dynamic hydrolysis and amide formation, gives rise to a dynamic peptide library composed of the corresponding Fmoc-dipeptides (CAF and KF). When the cationic polysaccharide chitosan is added to this mixture, selective amplification of the CAF peptide is observed giving rise to formation of nanosheets through coassembly. By contrast, upon addition of anionic heparin, KF is formed that gives rise to a nanotube morphology. The dynamic adaptive potential was demonstrated by sequential morphology changes depending on the sequence of polysaccharide addition. This first demonstration of the ability to access different peptide sequences and nanostructures, depending on the presence of biopolymers, may pave the way to biomaterials that can adapt their structure and function and may be of relevance in the design of materials able to undergo dynamic morphogenesis

    Supramolecular fibers in gels can be at thermodynamic equilibrium : a simple packing model reveals preferential fibril formation versus crystallization

    Get PDF
    Low molecular weight gelators are able to form nanostructures, typically fibers, which entangle to form gel-phase materials. These materials have wide-ranging applications in biomedicine and nanotechnology. While it is known that supramolecular gels often represent metastable structures due to the restricted molecular dynamics in the gel state, the thermodynamic nature of the nanofibrous structure is not well understood. Clearly, 3D extended structures will be able to form more interactions than 1D structures. However, self-assembling molecules are typically amphiphilic, thus giving rise to a combination of solvophobic and solvophilic moieties where a level of solvent exposure at the nanostructure surface is favorable. In this study, we introduce a simple packing model, based on prisms with faces of different nature (solvophobic and solvophilic) and variable interaction parameters, to represent amphiphile self-assembly. This model demonstrates that by tuning shape and "self" or "solvent" interaction parameters either the 1D fiber or 3D crystal may represent the thermodynamic minimum. The model depends on parameters that relate to features of experimentally known systems: The number of faces exposed to the solvent or buried in the fiber; the overall shape of the prism; and the free energy penalties associated with the interactions can be adjusted to match their chemical nature. The model is applied to describe the pH-dependent gelation/precipitation of well-known gelator Fmoc-FF. We conclude that, despite the fact that most experimentally produced gels probably represent metastable states, one-dimensional fibers can represent thermodynamic equilibrium. This conclusion has critical implications for the theoretical treatment of gels

    Tripeptide emulsifiers

    Get PDF
    Traditional, surfactant based emulsions have applications in the food, cosmetic, encapsulation and materials industries. The majority of the surfactants that are currently in use are based on lipids that are extracted from natural sources, however, other surfactants, based on polypeptides, copolymers and solid particles (Pickering emulsions)are also used. The process by which traditional amphiphilic surfactants stabilize biphasic mixtures by interfacial assembly and the consequent reduction of surface tension is well understood. Although these surfactants are well-suited to stabilize emulsions, they are not always biocompatible or biodegradable. In addition, they may not have sufficient stability at elevated temperatures or extremes of pH, which can limit their utility in a variety of applications. Therefore, it is desirable to identify a class of surfactants that can be tuned, or tailored, to match the application for which they are used

    Mesenchymal stem cell fate : applying biomaterials for control of stem cell behavior

    Get PDF
    The materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behaviour. This is important as the ability to 'engineer' complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate

    MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth

    Get PDF
    A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model

    Cooperative self-assembly of peptide gelators and proteins

    Get PDF
    Molecular self-assembly provides a versatile route for the production of nanoscale materials for medical and technological applications. Herein, we demonstrate that the cooperative self-assembly of amphiphilic small molecules and proteins can have drastic effects on supramolecular nanostructuring of resulting materials. We report that mesoscale, fractal-like clusters of proteins form at concentrations that are orders of magnitude lower compared to those usually associated with molecular crowding at room temperature. These protein clusters have pronounced effects on the molecular self-assembly of aromatic peptide amphiphiles (fluorenylmethoxycarbonyl- dipeptides), resulting in a reversal of chiral organization and enhanced order through templating and binding. Moreover, the morphological and mechanical properties of the resultant nanostructured gels can be controlled by the cooperative self-assembly of peptides and protein fractal clusters, having implications for biomedical applications where proteins and peptides are both present. In addition, fundamental insights into cooperative interplay of molecular interactions and confinement by clusters of chiral macromolecules is relevant to gaining understanding of the molecular mechanisms of relevance to the origin of life and development of synthetic mimics of living systems

    Ten Steps to Organize a Virtual Scientific Symposium and Engage Your Global Audience

    Full text link
    The paper describes guidelines for the planning, organization, and successful execution of virtual, global scientific conferences for global audiences. The guidelines are based on experience and lessons learned during the organization of the 3-day 2020 Virtual Systems Chemistry Symposium hosted on Zoom webinar and Twitter, held on May 2020 with over 1000 registered participants from 46 different countries

    Integrating computation, experiment, and machine learning in the design of peptide-based supramolecular materials and systems

    Get PDF
    Interest in peptide-based supramolecular materials has grown extensively since the 1980s and the application of computational methods has paralleled this. These methods contribute to the understanding of experimental observations based on interactions and inform the design of new supramolecular systems. They are also used to virtually screenand navigate these very large design spaces. Increasingly, the use of artificial intelligence is employed to screen far more candidates than traditional methods. Based on a brief history of computational and experimentally integrated investigations of peptide structures, we explore recent impactful examples of computationally driven investigation into peptide self-assembly, focusing on recent advances in methodology development. It is clear that the integration between experiment and computation to understand and design new systems is becoming near seamless in this growing field

    Improving cartilage phenotype from differentiated pericytes in tunable peptide hydrogels

    Get PDF
    Differentiation of stem cells to chondrocytes in vitro usually results in a heterogeneous phenotype. This is evident in the often detected over expression of type X collagen which, in hyaline cartilage structure is not characteristic of the mid-zone but of the deep-zone ossifying tissue. Methods to better match cartilage developed in vitro to characteristic in vivo features are therefore highly desirable in regenerative medicine. This study compares phenotype characteristics between pericytes, obtained from human adipose tissue, differentiated using diphenylalanine/serine (F2/S) peptide hydrogels with the more widely used chemical induced method for chondrogenesis. Significantly higher levels of type II collagen were noted when pericytes undergo chondrogenesis in the hydrogel in the absence of induction media. There is also a balanced expression of collagen relative to aggrecan production, a feature which was biased toward collagen production when cells were cultured with induction media. Lastly, metabolic profiles of each system show considerable overlap between both differentiation methods but subtle differences which potentially give rise to their resultant phenotype can be ascertained. The study highlights how material and chemical alterations in the cellular microenvironment have wide ranging effects on resultant tissue type
    • …
    corecore