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Abstract: Interest in peptide-based supramolecular materials has 
grown extensively since the 1980s and the application of 
computational methods has paralleled this. These methods 
contribute to the understanding of experimental observations 
based on interactions and inform the design of new 
supramolecular systems. They are also used to virtually screen 
and navigate these very large design spaces. Increasingly, the 
use of artificial intelligence is employed to screen far more 
candidates than traditional methods. Based on a brief history of 
computational and experimentally integrated investigations of 
peptide structures, we explore recent impactful examples of 
computationally driven investigation into peptide self-assembly, 
focusing on recent advances in methodology development. It is 
clear that the integration between experiment and computation to 
understand and design new systems is becoming near seamless 
in this growing field.  

1. Introduction 

There is a significant and growing interest in repurposing the 
building blocks of life to create supramolecular materials. 
Peptides are well-suited for this purpose, as they are composed 
of 20 natural amino acid building blocks (Figure 1) that cover a 
wide range of non-covalent interactions and chemical 
functionalities.[1–11] The limitless possibilities of designing 
sophisticated functions based on amino acid building blocks are 
evident from the protein structures found in the biological world. It 
is, however, still challenging to design peptide materials and 
architectures from first principles due to the inherent complexity, 
even when considering short peptide sequences.  
 
There are three general approaches to peptide-based materials 
design. These are primarily bio-inspired or biomimetic 
approaches, where known biological structures or sequences are 
copied, modified, optimised or simplified.[12,13] Alternatively, 
combinatorial screening approaches are used to identify 
(ensembles of) peptides with desired properties through side-by-
side comparison and optimisation. In these systems, there is no 
inherent bias from known biological designs.[14–18] Finally, based 
on a fundamental understanding of the combinatorial interactions 
of amino acid side chains, rational sequence design based purely 

on physical chemistry insights into interactions becomes possible. 
Integrating computational and experimental approaches offers 
significant complementary advantages in these areas.  
 
The current feature article focuses on recent examples of 
computationally-driven and integrated 
computational/experimental approaches to probe peptide design 
rules and their resulting supramolecular structures. Applications 
of computational chemistry methods are reviewed, including 
emerging methods such as machine learning. We also highlight 
examples that show integrated computational methods with 
experimental approaches which have complementary 
advantages in understanding bio-inspired systems, combinatorial 
screening, and rational design. Throughout the review, we 
consider a spectrum of complexity, from the self-assembly of 
single peptides to complex systems involving multiple interacting 
peptides.[1] In such a fast-moving field, it is only possible to do 
justice to some of the excellent research papers published in 
recent years, and our aim is not to provide a comprehensive 
overview. Instead, we focus on a smaller number of key examples 
that are well-suited to illustrate complementary benefits from 
using both experiment and computation in supramolecular 
peptide materials and systems design.  

2. Brief historical overview: integration of 
experiment and computation in peptide 
assembly 

Regarded as a pioneering example in the reductionist design of 
supramolecular peptide assemblies, in 1988, DeGrado et al. 
designed, informed by the structure and sequence of alamethicin 
and melittin, bilayer membrane pore-forming peptides, a 21-mer 
peptide composed of only L and S residues ((LSSLLSL)3). This 
design was based on chemical intuition and understanding of 
protein structures and rationalised as having a water-facing (S) 
hydrophilic and bilayer-facing (L) hydrophobic surface held in 
positions by an amphipathic α-helical secondary structure. This 
intuition was confirmed by circular dichroism (CD) and 
minimisation of the helices in the AMBER forcefield, which at the 
time required using a Cray 1-A supercomputer (Figure 2a). It was 
found via the Muller-Montal planar bilayer method that this 
designed peptide sequence did form ionic conduction membrane 
pores and, when inserted into a membrane, had a conductivity 
similar to that of an acetyl-choline receptor via planar bilayer ion 
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conductance experiments.[19] Further investigating α-helical 
design rules, Woolfson et al. inserted proline residues into known 
α-helical sequences[20], and they found via molecular modelling in 
an implicit solvent that in every instance, the proline residue 
produced a helical kink in the α-helical structure, at a significant 
hydrophobic penalty due to the proline sidechain becoming 
orientated towards the solvent. This demonstrated the sensitivity 
of peptide secondary structure on individual residues.[20] These 
early studies linked amino acids to sequence structure, which 
provided a basis for designing supramolecular properties from 
amino acid sequences. 
 
 

 
 
Figure 1. Integrating Computation and Experiment in Design of 
Peptide-Based Supramolecular Materials and Systems. 
(A) Atomistic gene-encoded amino acid alphabet with MARTINI 
coarse-grained bead overlaid on the atoms they represent.[21] (B) 
Representation of peptide sequence complexity with planetary 
volume representing sequence space spaces ranging from 400 
for dipeptides to 1,280,000,000 for heptapeptides, varying as 20n 
with n being the peptide chain length. (C) Computational 
methods such as molecular dynamics, virtual screening and 
machine learning can expand the accessible sequence space. 
(D) Schematic showing how computational design and 
experimental observations can be combined to design self-
assembling systems, including supramolecular hydrogels.   
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In 1993 Zhang et al. designed the hexadecapeptide EAK16 
((AEAEAKAK)2) based on the design rule that alternating 
hydrophobic-hydrophilic residue patterns tend to form β-sheet 
structures [22], which was confirmed by CD. They reasoned that 
the alternating sequence and secondary structure amplified the 
charge complementarity effect by directing positive and negative 
residues towards each other (Figure 2b). These attractive and 
regular interactions promoted the self-assembly of the peptide 
into membranes formed of individually woven filaments of 10-20 
nm width. This peptide design rule was found to be broadly 
extendable with the discovery in 1995 that a similar 
hexadecapeptide RAD16 ((RARADADA)2) also yielded a β-sheet 
structure. This later study showed that EAK16 and RAD16 could 
self-assemble into membranes or filaments depending on the 
solution conditions.[23] Researchers continue to build on these 
designs, including charge complementary patterns, bioactive 
groups, shorter sequences, etc.[11,24] 
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This experimental work was followed by computational validation 
by Jun et al., who compare EAK16 with EAK16-IV ((AE)4(AK)4) in 
terms of energetic contributions of Lennard-Jones (LJ) exclusion, 
intrachain electrostatic interaction and bending energy of their 
coarse-grained model. Using Metropolis Monte Carlo (MC) 
simulations, the interaction energies were calculated for many 
possible conformations. The results showed an energetic penalty 
of +1.6 kBT for forming a β-hairpin for EAK16, while EAK16-IV 
had a favourable β-hairpin energetic change of -2.4 kBT. This 
finding was in line with their Fourier transformed infra-red 
spectroscopy (FTIR) spectra of EAK16 and EAK16-IV, which 
showed a peak for β-sheet structures in both but an additional 
peak from a β-turn structure in EAK16-IV only.[25]  
 
A non-biological architecture also developed in the 1990s was the 
alternating D/L cyclic octapeptide cyclo[-(dAEdAQ)2] designed by 
Ghadiri et al.[26] This cyclopeptide was rationalised by the idea that 
an alternating cyclic D/L sequence of an even number of residues 
could form a low-energy ring where the side chains lay 
perpendicular to the ring and that the backbones would hydrogen-
bond in an alternating antiparallel pattern (Figure 2c). Under basic 
conditions, the monomers remain soluble and experience 
electrostatic repulsion, preventing the stacking of the backbones; 
however, under acidic conditions where the E residue sidechains 
become protonated, the monomers become less soluble and no 
longer experience the electrostatic repulsion. This was confirmed 
by electron microscopy, which confirmed that these monomers 
spontaneously self-assemble into nanotubes in solution (Figure 
2c, inset). Subsequently, by using all-atom molecular dynamics, 
Ghadiri et al.[29] showed that a stack of 10 of these cyclic 
octapeptides could hold up to 37 water molecules in a pattern of 
alternating density and remain stable with only a slight tendency 
of the end-of-tube peptides to dissociate. 
 
Reches and Gazit pioneered a reductionist approach to identify 
self-assembling sequences, first demonstrated by systematic 
reduction of the β-amyloid peptide to its shortest aggregating 
sequence (FF).[27,30] This dipeptide rapidly formed nanotubes in 
water upon dissolution from an organic solvent (Figure 2d). These 
nanotubes could be loaded with silver ions and used as a 
sacrificial, protease-degradable template to reduce silver ions to 
form silver nanowires. Görbitz showed that these solvated 
nanotubes were of the same morphology (via X-ray diffraction 
(XRD)) as single crystal FF and composed of water channels 
surrounded by peptide backbones and separated by aromatic 
zippers (Figure 2d inset).[28] These FF systems were simulated in 
2009 by Marrink et al. in the development of the MARTINI 
forcefield [21]; they found that while being able to reproduce the 
degrees of freedom of all-atom forcefields and closely resemble 
the radial distribution functions, they did not form the expected 
nanotube morphology. It was subsequently shown that the 
number of dipeptides simulated (96) would not be sufficient to 
form a nanotube in this forcefield. Building on this pioneering work, 
computational studies were developed to explore the sequence 
space further. Screening of the entire di-and tripeptide sequence 
space has been explored by Frederix et al., who found many self-
assembling peptide systems that have been further investigated, 
including the reproduction of the water channel arrays surrounded 
by stabilising F zippers in FF, confirming earlier XRD studies of 
Görbitz.[28,31–33]  
These early examples illustrate that computation and 
experimental approaches have played an essential role in 
designing and understanding self-assembling peptides. Studies 
were initially rarely integrated and usually driven by 
experimentation, with the computational aspect providing a 
theoretical basis for earlier observations. Over the years, the 
focus gradually became more tightly integrated, using 
computation to understand these systems and to inform 
experiments confirming computational predictions when 
designing new systems. 
 

 
 

 

 

 
Figure 2. Early examples of reductionist design and discovery of 
peptide-based supramolecular materials (A) Tri- tetrameric 
models of (LSLLLSL)3 and penta- and hexameric models of 
(LSSLLSL)3 showing increasing pore radius, a space-filling 
model of a guanidinium ion included for size comparison. [19], 
reproduced with permission from AAAS 1988. (B) Repeating 
structure of (AEAEAKAK)2 and the alternative electrophilic and 
hydrophobic stacking observed between the peptides[22], 
reproduced with permission from PNAS 1993 (C) Nanotube 
formed of alternative D/L cyclic octapeptides with the backbone 
hydrogen bonds visualised, inset: hydrated single nanotube 
structure resolved by electron microscopy with dimensions of 
~86x1180 nm,[26] Reproduced with permission from Springer 
1993. (D) Transmission electron microscopy resolved FF 
nanotube,[27] Reproduced with permission from AAAS 2003 inset 
FF nanotube pore visualised with the space-filling model within 
the greater atomistic framework.[28] Reproduced with permission 
from RSC 2006. 
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3. Computationally Driven Materials Discovery 

Since Gazit’s observation of the possible role of π-stacking as the 
key driver of the formation of certain amyloid fibrils  [30] and their 
subsequent discovery of the central dipeptide (FF) as a powerful 
self-assembling unit, there has been growing interest to gain 
insight into the underlying peptide self-assembly rules, starting 
with the simplest possible systems. However, even with simple 
systems, analysing the vast chemical space created by the 
potential combinations of amino acids to determine the self-
assembly rules of peptides quickly becomes intractable using 
modern experimental approaches. An exception are the 
dipeptides (400 options), where the combinatorial sequence 
space can feasibly be fully synthesised and characterised. This is 
illustrated by Görbitz’s analysis of a database of 160 dipeptide 
crystal structures, which could then be classified into different 
types, depending on key features involving the polar or nonpolar 
nature of the side chains, and backbone orientations. This 
observation of sequence-dependent crystal ordering among 
dipeptides paved the way for further studies to elucidate this 
behaviour.[27]   
 
 
Equation 1. 

𝐴𝑃 =
𝑆𝐴𝑆𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑆𝐴𝑆𝐴𝑓𝑖𝑛𝑎𝑙
 

 
Frederix et al. computationally screened the dipeptide sequence 
space (400 sequences) for their aggregation ability using a 
coarse-grained (CG) MARTINI force field.[21] The Martini forcefield 
uses a 4:1 atom/CG-bead mapping to represent protein backbone 
and side chains, and a 2:1 or 3:1 atom/CG-bead mapping for ring 
systems, parameterised based on the reproduction of partitioning 
free energies between polar and apolar phases of a large number 
of chemical compounds. The simulations of all 400 dipeptides 
were then compared by their ability to aggregate through the 
definition of the AP (aggregation propensity) score (Equation 1). 
The results from these simulations could reproduce known self-
assembling dipeptide sequences such as FF, FW, and IF while 
also distinguishing against those known not to self-assemble, 
such as FE, FK and VF. Remarkably, despite the coarse-grained 
nature of the FF simulation, more extended timescale simulations 
demonstrated that the CG forcefield could also provide 
information about the assembly process (e.g., snapshots for FF 
assembly are displayed in Figure 3b). In addition to revealing the 
molecular level detail of the formation of FF nanotubes, the CG 
forcefield was also able to reproduce experimentally observed 
properties of the final nanostructure. The diameter of the FF 
nanotube was in close agreement with previously reported XPRD 
values and the shift of dihedral angles between aromatic residues 
to a constrained, self-stacked conformer (Figure 3b,c).[28,33,34] This 
rotation was observed in the case FF where the sidechain 
reorganisation during self-assembly gives rise to the hydrophobic 
zipper motif observed in some peptides, wherein an extended 
configuration enables the hydrophobic residues of one molecule 
to be exposed, creating a space for the hydrophobic residues of 
another molecule to "zip" into the 0° dihedral angle configuration 
of another peptide molecule (Figure 3a,c,g).[35,36] 
Building on this work,[31] as well as several studies on liquid-liquid 
phase separation (LLPS) of proteins and peptides,[37,38] Tang et 
al.[39] explored the 400 dipeptide sequence space to identify 
minimalist peptides that can undergo LLPS. In order to do so, they 
quantified the microscopic fluidity known to be important in liquid 
condensates and used these insights to establish design rules for 
dipeptide condensates. Simulations were performed using the 
MARTINI force field. They could identify LLPS systems by 
combining AP and clustering degree to quantify mobility and 
exchange of dipeptides within aggregates.[39] They identified a 
number of potential LLPS dipeptides and experimentally 

demonstrated the LLPS of QW, which was corroborated by 
differential interference contrast (DIC) microscopy and 
turbidimetry propensity. They also predicted 346 other dipeptides 
capable of LLPS. The design rules that could be derived from 
these predictions indicated three types of sequences with high 
LLPS probabilities – 1) an aromatic residue of high polarity (e.g., 
Y) with a hydrophobic residue (e.g., L); 2) an aromatic residue 
(such as F, and a polar residue (e.g., Q); 3) positively charged N-
terminal residue and negatively charged C-terminal residue (e.g., 
K, D respectively). Interaction analysis shows that the LLPS of 
QW is a result of the interplay among QW-QW aromatic stacking, 
hydrogen-bonding, anion- and cation-π interactions, and the QW-
water interactions. The work showed that, perhaps surprisingly, 
there is no lower limit to the size of peptides that can phase 
separate and provided a basis for understanding the key 
interactions that lead to it. 
 
For longer peptides, the sequence space is too large to fully 
assess experimentally. Therefore, computational and, more 
recently, machine learning algorithms have been used to increase 
the accessible sequence space by several orders of 
magnitude.[31,32,40] After the aforementioned analysis of the 
dipeptide self-assembly space, Frederix et al. screened the entire 
tripeptide sequence space using coarse-grained molecular 
dynamics (CGMD) (Figure 3 e,h).[32] In this case, the aim was to 
identify tripeptides that could form hydrogels, which require high 
self-assembly propensity combined with favourable solvent 
interactions[41]. This study, therefore, included a logP-weighted 
measure of self-assembly (APH, Equation 2), which could 
discriminate between the top aggregators (PFF, WFL, etc.) and 
the top hydrophilicity-weighted aggregators (KFD, KWD, etc.). 
Thirteen target peptides were synthesised, and their assembly 
behaviour was experimentally assessed to verify these 
predictions, with four examples studied in more detail. Dynamic 
light scattering (DLS) was used to measure the hydrodynamic 
radii (RH) of the aggregates of GGG, KFD, KYF and PFF in water 
which showed that the AP was a good indicator of aggregation 
(Figure 3Figure 3d). FTIR absorption spectra showed that in the 
case of KYF and PFF, the red-shifted amide modes indicate 
highly ordered structures where present. [32] By analysing the 
entire data set, design rules for higher aggregation could be 
formulated, namely that aromatic amino acids are most 
favourable in positions 2 and 3 in a tripeptide, cationic and 
hydrogen-bonding residues favour position 1 (N-terminus) while 
anionic residues favour position 3.  
 
 
Equation 2. 

𝐴𝑃𝐻 = (𝐴𝑃′)𝛼 ∙ 𝑙𝑜𝑔𝑃 
 
Where AP' represents the AP normalised to between 0 and 1 and 
α the exponent that can be used to bias for peptides containing 
polar residues for favourable solvent interactions favoured for 
hydrogelation. 
 
A number of these tripeptides were subsequently explored for oil-
water emulsification propensities. Several peptides that were 
found to self-assemble in water to form hydrogels could also 
stabilise water-in-oil emulsions, either through the formation of 
monolayers (DFF, FFD) or interfacial fibre (KYF, KWY) networks, 
which could be computationally correlated with self-assembly 
propensity.[42]  
 
Inspired by this tripeptide self-assembly mapping, Bera et al. 
investigated the tripeptide that was predicted to have the highest 
AP score, PFF, in more detail. Unlike most previously described 
FF-containing structures that are typically β-sheet-like, the PFF 
peptides were shown to form helical assemblies. Single crystal X-
ray analysis of the self-assembled PFF crystal showed the torsion 
angles of the PFF residue to be in the right-handed α-helices 
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region of the Ramachandran plot and the hydrophobic regions 
where oriented on the exterior, thus available for interactions with 
neighbouring peptide side chains through zipper motifs. FTIR and 
CD spectra (Figure 3f) showed a characteristic helical peak 
confirming that structured fibres can emerge from packed arrays 
of helices. These short intermolecular α-helices stacked head-to-
tail and side-to-side (the direction of growth of the fibre), with the 
sides forming a highly hydrophobic phenylalanine zipper region 
(Figure 3g). To better understand if this is a unique feature of PFF 
or a more generic self-assembly mechanism, the proline residue 
was replaced by hydroxyproline (O), a non-gene-encoded amino 
acid found in collagen. This tripeptide was also found to self-
assemble into a superhelical structure. The reported stiffness of 
PFF was more than double that of FF and more than five times 
greater than that of FF in the case of OFF due to the superhelical 
organisation and additional hydrogen bonds formed by the O 
residue.[35] The CG equilibrium simulation approach thus provides 
useful insight into the potential for short peptide structures to self-
assemble and furthermore identify interesting candidates for 
detailed experimental analysis to elucidate details, such as the 
remarkable helical conformer observed in PFF crystals.  
 
CG methods cannot change chemical stages in situ, such as 
those relevant to dynamic protonation or deprotonation, which is 
known to occur during self-assembly and could help to drive 
assembly, particularly in charged systems. It has been recognised 
that ionisation equilibria can be strongly impacted by proximity 
and local dielectric constants. Hence the observed (apparent) pKa 
values in self-assembled structures with ionisable groups are 
frequently significantly shifted compared to those observed in 
dilute solutions. For example, the apparent pKa of the terminal 
carboxylic acid in Fmoc-FF was measured to be shifted by as 
much as 6 units.[27] In order to appropriately accommodate these 
pKa shifts, a variant of MD was developed that can handle this 
chemical change, namely constant pH [coarse-grained] molecular 
dynamic CpHMD. [43,44] This approach enables in situ changing of 
protonation states of titratable groups depending on the system 
pH and local environment. This dynamic method is preferential to 
fixing charge states based on pH as the theoretical pKa of a 
residue is only relevant in dilute systems where the local 
environment is only water, i.e., the ability to switch charge states 
could facilitate self-assembly. Van Teijlingen et al.[44] used a 
method developed initially by Radak et al.[43] with a stochastic 
charge neutralisation mechanism whereby the system remains 
charge-neutral by switching on/off charges on Martini water beads. 
This method, which measures the likelihood of deprotonation at a 
given pH based on a Monte-Carlo criterion (S, Equation 3.) and 
cooperativity (n), was validated by comparing an experimental 
titration of oleic acid with a CpHMD virtual titration of an oleic acid 
30-mer. 
 
Equation 3. 

𝑆 =  
1

10𝑛(𝑝𝐾𝑎−𝑝𝐻) + 1
 

 
In simulating Fmoc-FF self-assembly, the method was found to 
provide results that were in agreement with the reported pKa shifts 
by Tang et al. (Figure 4a,b).[45] The dynamic collapse of a 
nanotubular Fmoc-FF aggregate observed by Adams et al.[46] via 
pressure-response measurements was also simulated at different 
virtual pH values and these simulations showed good agreement 
with the experimental results. Namely, at pH 9, the nanotube is 
stable, and most carboxylate groups are deprotonated. In contrast, 
at pH 4, the tube collapses on itself (Figure 4d), and as it collapses, 
the local environment becomes more hydrophobic, causing 
further protonation, which propagates further collapse.[44] 
Applying CpHMD to CG simulations opens the door for more 
accurate modelling of the self-assembly of short peptide systems. 
Moreover, by incorporating the ability of the building blocks to 
adapt (change their chemical functionality) between the 

assembled and non-assembled states, the ability to design 
adaptive, functional materials through computational modelling 
becomes more feasible. 
 
Moving beyond the di- and tripeptide sequence space requires 
dealing with much larger data sets. For these situations, machine 
learning has been used increasingly to accelerate materials 
discovery, with a particular focus on discovering non-intuitive 
peptide sequences. For example, this can include peptide 
sequences that self-assemble despite being soluble and those 
that do not rely on known self-assembling sub-sequences.[47] Van 
Teijlingen et al. demonstrated how an iterative machine learning 
algorithm (active learning) could search the sequence space of 
longer peptides and select for properties such as aggregation and 
solubility.[48] Validating this method based on the previously 
discussed virtual screening of tripeptides by Frederix et al.[32] the 
active learning algorithm was able to find all of the top 20 AP 
scoring tripeptides with an order of magnitude less CGMD 
simulations than was possible with a traditional full screening 
(Figure 4e). Using this method and restricting the machine 
learning model only towards soluble peptides, they were able to 
find those aggregating and soluble peptides beyond often-used 
intuitive residues (F/K/D/V/I/L), including peptides with residues 
such as Y/G/S/C/P/M such as YCGY, DKYW, SYGYF, PPPYV 
and WGGGGGC.[40] Independent from this work, Batra et al. 
applied an alternative machine learning approach using a tree 
search algorithm to identify soluble self-assembling 
pentapeptides.[49] This algorithm was also validated by identifying 
the tripeptides with the highest self-assembly propensities and 
was shown to outperform virtual screening. In comparing the 
machine learning approach to intuition (by asking human experts 
to design several self-assembling peptide sequences), this 
machine learning process also identified soluble aggregating 
peptides such as SYCGY, PPPHY, RWLDY and WKPYY that 
deviate from the established intuitive norms that suggest 
pentapeptides such as VVVVV, VKVFF and KFAFD. In 
conjunction with the work of Van Teijlingen et al., this research 
demonstrates a broader chemical space for short peptide 
materials development than is usually exploited. 
 
Another example of active learning-directed peptide sequence 
space exploration was introduced by Shmilovich et al.,[50] who 
used an active learning approach to explore peptides 
functionalised with organic semiconductors to identify 
optoelectronic peptide nanostructures. They studied a tripeptide-
based bola-amphiphile design, the symmetrical D-tripeptide-
oligophenylenevinylene-tripeptide-D(DXXX-OPV3-XXXD) and 
explored the tripeptide sequence space (Figure 4f). DXXX-OPV3-
XXXD-type monomers form 1D nanowires due to the linear 
stacking of the π-core and show promising properties for 
nanoelectronics within a biocompatible context.[50]The target of 
the active learning model was to find the monomers that yielded 
the most significant degree of aggregation driven by π-core 
stacking. The machine learning method (Figure 4g) also included 
an active learning component in this work. Active learning 
iterations performed an additional four simulations and added 
their results to the model, which was then used to make additional 
predictions. This process was repeated over 25 iterations, at 
which point further improvement in the predictions was obtained. 
This outcome suggests that the evaluation of the entire 8,000 
tripeptide sequence space was effectively traversed within 100 
MD simulations (i.e., 80x faster than using a full screening 
method). The method revealed that tripeptides without bulky 
aromatic residues were favoured as their character impeded the 
formation of linear non-covalent linkages between the OPV3 
moieties. Instead, smaller hydrophobic residues, particularly M in 
the 3rd X position from the OPV3 moiety, were promising 
candidates for experimental validation.[50] 
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Figure 3. Computationally Driven-Discovery of Supramolecular Peptide Materials (A) All-atom FF crystal structure showing a water 
channel of ~10 Å. (B) self-assembly process of FF revealed by CGMD from dispersed in solution (top left) to single nanotube with 
water channel of ~10 Å (bottom right). (C) Dihedral angle distribution for a self-assembled FF nanotube (blue) and randomly 
distributed FF monomers in solution (red). (D) AP score for selected tripeptides vs. their measured RH values from DLS 
measurements (E) Grid showing combinations of amino acids in screened tripeptides and their AP score (N-termini on the Y-axis and 
C-termini on the X-axis) with a darker shade indicating a higher degree of aggregation, inset: CGMD simulation showing the dispersal 
of 300 triglycine monomers (F) CD spectra of aqueous PFF displaying the presence of helical structures. (G) PFF 2x3 
representations of unit cells. Grey and purple paper chain representations of P and F side chains, respectively, showing π-stacking 
with ribbon representation of the tripeptide backbone and dashed lines showing hydrogen bonding. (H) Close-up of a section of the 
grid shown in (E) indicating the positions of three experimentally confirmed self-assembling tripeptides and the hydrogels of each. 
Reproduced with permission from ACS 2007 and 2021, Springer 2015 and 2019. 
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Figure 4. Development of new methods for computational analysis of supramolecular peptide assembly, (A) Experimental titration of 
Fmoc-FF at different concentrations showing the theoretical (dilute) pKa and two shifted apparent pKa’s due to local environment 
effects that arise from self-assembly.[45] (B) CpHMD simulations of 600 Fmoc-FF molecules, which produce an increased apparent 
pKa from the theoretical value, which is in line with the measurements of oleic acid pKa at concentrations of 0.01 – 10 mM. (C) Fmoc-
FF model with the titratable group (carboxylate bead) shown in red with the switchable carboxylic acid bead shown inset in green. (D) 
Hollow cylinders of Fmoc-FF at pH 4, 7 and 9, CpHMD equilibrates to a mixture of protonated/deprotonated carboxylate groups and a 
stable structure, pH 9 is almost entirely deprotonated and a stable hollow tube while at pH 4 carboxylate groups have become mostly 
protonated showing structure collapse. (E) Number of CGMD simulations performed to find the top 20 previously reported tripeptide 
aggregators for the active learning algorithm vs screening (random probabilistic) and active learning results for aggregating tetra-, 
penta- and hexapeptides, where the red and blue lines represent maximum and mean APs respectively. (F) CG model of the 
generalised sequence space searched by Shmilovish et al. [50] (G) representation of the machine learning method used to conduct 
the search. The autoencoder attempts to reproduce an input molecule through a condensed informational embedding. This 
condensed latent space can then be used by a machine learning algorithm as a representation of the molecule and space to be 
searched for the optimal sequence. Reproduced with permission from ACS 2009 and 2020. 
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Machine learning algorithms have also been trained on 
experimental data, Li et al. synthesized a library of 2,304 peptide-
like molecules[51] based on 12 Fmoc-N-Protected amino acids, of 
which 81 were found to be hydrogel-forming via rheology. For 
each of the monomers, 3,109 PaDEL[52] descriptors were 
calculated and used to rationalize the molecular properties that 
promote hydrogel formation. Three machine learning binary 
classifiers (random forest, gradient boosting trees and logistic 
regression) were trained to predict from a data-resampled set (to 
mitigate against the large imbalance between positive and 
negative results) whether a monomer would form a hydrogel or 
not. Further, the models give an index of relative feature 
importance in how inputs map to classifications made, for 
instance, derivatives of the first ionization potentials, the Fmoc-
amino acid the peptide-like structure was derived from, and other 
electro-topographical descriptions of hydrogen atoms proved to 
be important in forming hydrogels. This example reveals how 
machine learning techniques can be usefully implemented to 
explain results and observations with vast input data. 

4. Integrated Approaches to Supramolecular 
Peptide Materials Design 

The preceding section described the ability to screen large 
datasets and expand the search space to discover new peptide-
based materials through computational methods. Traditionally, 
the design of new peptide-based materials is frequently inspired 
by motifs observed in biology, such as the minimalist amyloid FF 
motif, intrinsically disordered protein (IDP) inspired coacervation 
models, and from here involves an exploration driven by chemical 
intuition or testing of small sets of sequence variants. Thus, data-
driven and intuitive approaches can often go hand-in-hand, 
enabling both predictive learning-informed experimental studies 
of new materials and understanding specific molecular 
interactions that lead to macroscopic properties in materials. To 
illustrate this process, we discuss examples of distinct 
supramolecular morphology: one-dimensional self-assembly of 
supramolecular fibres, followed by 2D assembly and finally, the 
formation of coacervates and transiently disordered peptide 
structures.  
 
An important consideration when integrating computation and 
experiment is that MD methods typically approach 
thermodynamic equilibrium. At the same time, experimentally 
obtained structures may be kinetic aggregates and require 
thermal annealing to ensure they represent equilibrium structures. 
Notably, most reported self-assembling peptide nanostructures 
have very high aspect ratios (fibres and tubes). The high aspect 
ratio can result from growth kinetics along different axes in the 
supramolecular architecture. Networks of high aspect ratio fibres 
can form gels when fibres can interact to form a self-supporting 
network where the solvent is "trapped" within the fibre network. 
The strength of the intermolecular interactions between the fibres 
in the network can cause the structure to become kinetically 
trapped, in which case a gel-to-crystal transition may occur over 
time. In cases where the fibres present solvophilic interfaces, 
these 1-D structures can also represent a thermodynamic 
minimum, as demonstrated through a coarse-grained 
approximation of a self-assembling process using 3D shapes with 
different solvophobic/-philic surfaces.[41]  
 
A widely studied class of self-assembling peptides that form fibres 
and gels representing kinetic or thermodynamic structures are the 
aromatic peptide amphiphiles, short peptides functionalised with 
flat aromatic moieties to favour self-assembly[53]. As an early 
example, Zhang et al. studied 6 peptides, DADA, AA, GG, GDA, 
GS, and GT, by applying a fluorenylmethyloxycarbonyl (Fmoc) 
group to the N-terminus. The formation of nanofibrous hydrogels 
was observed in 5 out of 6 dipeptides, with CD spectra indicating 

the formation of superhelical arrangements by Fmoc and alanine 
residues.[54] Our group and Gazit simultaneously and 
independently discovered that Fmoc-FF forms nanostructured 
hydrogels at physiological pH[55,56], and a supramolecular 
architecture composed of π-interlocked beta sheets was 
proposed informed by spectroscopy and scattering data and 
optimised using computational modelling and energy 
minimisation [54]. Xu et al.[58] provided an enzyme-catalysed route 
to facilitate the formation of nanotubular hydrogels (and xerogels) 
of Fmoc-LLL. The morphology and supramolecular architecture of 
the nanotubes were studied using spectroscopy and scattering 
approaches, as well as molecular dynamics simulations. This 
xerogel was shown to be composed of nanotubes characterised 
by antiparallel β-sheets by the FTIR bands around 1636 and 1690 
cm-1. All-atom molecular dynamics found the β-sheets and π-
stacking formed around 4.7 Å and 3.6 Å respectively, both values 
being within 0.2 Å of the equivalent wide-angle x-ray scattering 
(WAXS) measurements. 
 
At this time, Fmoc is the most popular flat aromatic N-modification, 
however others, including naphthalene (Nap) and Pyrene (Py), 
have been studied in the context of FF self-assembly. For 
instance, Ghosh et al.  found via UV-vis spectroscopy that the 
relatively stronger Py-Py π-π interactions induced parallel 
stacking while the weaker Nap-Nap π-π stacking yielded parallel 
stacking.[59]  
 
The integration of computation and experiment proved useful in 
enhancing the understanding of peptide-based materials. Fleming 
et al., investigated the use of FTIR in the structural assignment of 
supramolecular systems.[57] Fleming et al., specifically studied the 
interpretation of the presence of the IR peak at 1680−1695 cm−1 
in Fmoc-AA by analysing the vibrational modes using DFT. In 
proteins and longer peptides, this vibrational peak is typically 
associated with carbonyls in an antiparallel β-sheet conformation, 
and it was previously assigned as such, e.g. for Fmoc-FF[57]. 
Evidence of decreasing intensities of this peak with increasing 
peptide bulkiness was previously observed[60]. The fact that this 
substitution left the 1685 cm−1 peak, which was absent in the Fmc 
spectrum unshifted, proved its attribution is correctly assigned to 
the carbamate group rather than the formation of a particular 
secondary structure motif upon self-assembly. However, DFT 
calculations of the monomers and parallel and antiparallel 
tetramers were able to indicate that the antiparallel orientation of 
the carbamates was closest to the experimental spectra.[61] 
 
 
Reversible, enzymatic self-assembly of peptide nanostructures 
was explored as a means of annealing by Hughes et al., who 
reported the formation of rare 2D nanosheets composed of Fmoc-
SF-OMe through a thermodynamically controlled process 
involving in situ condensation of Fmoc-S and F-OMe.[62] The 
advantage of in situ enzymatic condensation of Fmoc-S/F-OMe to 
form the Fmoc-peptide in situ is that it operates under 
thermodynamic control, thus avoiding kinetic products and 
favouring the thermodynamically most stable supramolecular 
organisation [59]. Fmoc-SF-OMe, upon formation, gave rise to an 
extended 2D supramolecular structure. FTIR peaks at 1640 and 
1680 cm-1 also indicated the growth of an ordered structure, while 
WAXS diffraction identified a repeating unit of 16 Å along the 
peptide backbone. Characteristic π-stacking and β-sheet spacing 
peaks demonstrated the ability to grow via antiparallel π-stacking 
in one dimension and β-sheet alignment in another.[62] All-atom 
MD was used to gain insight into the hydrophobic and hydrogen-
bonding molecular association of monomers. This confirmed the 
ability of the phenyl side chains to form extended π-β stacked 
bilayers, which, taken into consideration with the fluorenyl π-
stacking, explains the 2D growth of the supramolecular structure. 
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Figure 5. Integrating computation and experiment in tripeptide assemblies. Transmission electron micrographs of (A) YFD and (C) 
DYF showing nanofibers and crystals. Chemical structures of C terminal amidated (B) YFD (D) DYF Preferred conformation of the 
single peptide simulations (E) YFD (F) DYF. Crystal structures, (G) YFD and (H) DYF showing different interfaces forming the 
lattice.[65] (I) Chemical structure of HYF (J) Scanning electron microscope image of HYF crystal (K) Interactions between the peptide 
and water (L). PXRD measurements of lattice parameters indicate water pore expansion upon hydration (M) FTIR spectra of HYF 
showing the amide bands shifting during dehydration pores in the HYF crystal. Red lines indicate water–water and water–tripeptide 
H-bonds. Blue lines indicate tripeptide–tripeptide H-bonds. (N) Change in the pore volume in the crystal at high (90%) and low (20%) 
humidities (O) lattice parameter changes derived from the Pawley refinement with MD simulated pore width in response to RH (and 
R. Hyd.) changes[66] Reproduced with permission from AAAS 2017 and springer 2021 
 
Building on this work, to further understand hierarchical 
organisation in Fmoc dipeptide nanostructures, Sasselli et al., 
explore a similar approach combining reversible enzymatic self-
assembly and molecular dynamics to supplement spectral 
information. They studied Fmoc-TF-NH2, Fmoc-TF-OMe, Fmoc-
TL-NH2 and Fmoc-TL-OMe, all formed through reversible 
enzymatic condensation reactions. In competition during 
enzymatic assembly, with the precursors of all four peptides 
mixed, Fmoc-TF-NH2 showed to outcompete the others, which 
indicated that its assembly was the most stable. This observation 
was likely due to the higher hydrophobicity and aromaticity of F, 
in conjunction with the presence of the amide as opposed to 

methyl ester, which results in more H-bonds. Following insights 
from Fmoc-FF assembly as discussed earlier, [57] two antiparallel 
models of Fmoc-TL-NH2 were constructed, each having a 
different H-bond arrangement. It could be confirmed that one of 
these had a more favourable configuration based on how one of 
the models began to resemble the other following 150 ns MD 
simulations of each of them.[64] As observed in TEM analysis, the 
hierarchical twisting of fibres was favoured in further simulations 
comparing the two fibre configuration versus bilayers. Thus, 
computation supplements the understanding of these structures 
from the atomistic to the microscopic level.  
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In an effort to explore tripeptide sequence-dependent assembly 
atomistically, following tripeptide design insights.[32], Lampel et al. 
studied a subset of identified tripeptides to investigate sequence 
isomers on solution conformations and, consequently, self-
assembly. The self-assembly propensity and conformation 
selection of six C-terminal amidated tripeptide sequence isomers 
made of F, D and Y were investigated.[65] Conformational analysis 
of single molecule atomistic MD simulations showed that the 
dihedral angles between Y and F residues were strongly 
dependent on the sequence (Figure 5e,f). These aromatic 
moieties were seen to be predominantly self-stacked in both FYD 
and YFD (syn with respect to the peptide backbone), similar to the 
sidechain self-stacking observed in FF. By contrast, in DYF and 
DFY, the aromatic moieties were arranged on opposite sides of 
the peptide backbone in an anti-conformation. These 
conformations were experimentally observed in crystal structures 
obtained for DYF and YFD (Figure 5g,h). This observation 
suggests that these tripeptides pre-organise in solution and retain 
these conformations in supramolecular crystals. Thus, this work 
shows the peptide sequence dependence of the aggregation of 
these peptides and how they can be better understood by the 
variation in intramolecular interactions. This sequence 
dependence has been further used for the controlled formation of 
polymeric peptide pigments by enzymatic oxidation with varying 
efficiencies based on their preorganisation. 
 
We hypothesise that supramolecular peptide crystals could serve 
as functional materials with water-responsive behaviour[67], 
requiring aqueous pores, stiff and deformable domains, and 
anisotropic hierarchical architectures. Piotrowska et al. selected 
four peptides composed of a YF dyad coupled with a D/H amino 
acid at the C- and N-termini to make HYF, YFH, DYF and YFD. 
[66] Except for YFH, the tripeptides self-assembled to form needle-
like crystals in solution (Figure 5j). X-ray powder diffraction 
measurements (PXRD) were performed in a humidity-controlled 
chamber, which showed crystal lattice changes, in the case of 
HYF, during water absorption/desorption cycles (Figure 5f). HYF 
exhibited aqueous pores that contract upon dehydration (Figure 
5n) when the pore size reduces and expands on rehydration. The 
most significant change in pore size was registered between 10-
30% relative hydration (R. Hyd). To study the mechanism of water 
responsiveness at a molecular level, atomistic MD simulations 
were performed, starting with a single pore from the crystal 
structure and simulating with water amounts corresponding to 
varying humidities. Upon analysis of the hydrogen bonding 
occurrence and energy associated with the stability of these H-
bonds between the internal peptide pore wall and the water 
molecules, it could be demonstrated that the H-bonding network 
between water and the pore surface was a critical feature to the 
water-responsive behaviour(Figure 5k). The 20-30% transition, 
which was reproduced in MD simulations in close agreement with 
the PXRD results (Figure 5l), is highlighted by the comparison of 
pore width changes in the MD to the crystal lattice parameter 
changes at different R. Hyd (Figure 5o). This is also consistent 
with the amide region shifts observed in FTIR (Figure 5m), 
indicating a strengthening of H-bonds upon dehydration. 
 
The Marchesan group focus on the effects of introducing hetero-
chirality in tri-peptides to influence self-assembly behaviour.[68–72]  
They deconvolute the design rules for specific aromatic motifs that 
are present in heterochiral XFF and FXF systems (where X is 
either D or L enantiomer), showing different macroscopic and 
morphological behaviours. They first explored this concept by 
considering the effect of chirality in the formation of the FF zipper 
motif in the tripeptide LFF and its epimer DLFF.[68] Both epimers 
were observed to give rise to nanostructures with highly organised 
characteristics, as seen from microscopy, CD and Thioflavin T 
fluorescence. However, only the D-stereoisomer was observed to 
lead to the formation of nanofibers and gelation following the 
lowering of its pH to 7.4. In contrast, the L-peptide was seen to 

form short, thin filaments that were not sufficiently stable to form 
the network required to support a stable hydrogel. Energy 
minimisation simulations were carried out to understand how 
changing a single amino acid chirality could affect the self-
assembly ability. These simulations showed that the D-epimer 
prefers a more extended molecular length that exposes the F 
rings, creating a space for the ring of another molecule to "zip" 
into the configuration. By contrast, the L-epimer was more 
disordered, with less of a conformational preference and thus 
more likely prone to a transient nature (Figure 6e,f). [68]  
 
Building on this work, Garcia et al., studied the effects of amino 
acid chirality on the self-assembly of a set of tripeptides 
composed of phenylalanine dyads separated by a variable D or L 
amino acid (Figure 6a). Specifically, they investigated the 
differences between the assemblies of FAF, FDLF, and FDIF to 
find out why the heterochiral peptides assemble and form gels, 
whereas the homochiral ones do not. By using theoretical and 
experimental CD (Figure 6d), it could be demonstrated that the D-
peptides showed an aromatic zipper contribution due to the steric 
hindrance introduced by the hetero-chirality. In particular, 
Ramachandran plots of all the peptides indicated type II β turns 
(Figure 6e). However, only the heterochiral peptides had the three 
hydrophobic side chains on the same side of the peptide 
backbone, where their mutual interactions favoured a turn overall 
by excluding water molecules (Figure 6f). The evidence of the F 
zippers can potentially be applied to other peptides with similar 
motifs, thus expanding design concepts in peptide design.[70]  
 
The ability of heterochiral peptide-based materials to self-
assemble and remain (as opposed to homochiral, all L peptides) 
unmetabolised in the body led to the investigation of these 
materials as potential vehicles for drug release. Parisi et al., study 
the release of an anticancer drug, 5-fluorouracil (5-FU), from 
hydrogels of DLFF. [73] The peptide was found to self-assemble 
and give rise to hydrogel formation. A lower storage modulus was 
observed when the drug was incorporated into the gel structures, 
suggesting that the drug plays a role in cross-linking the fibres. 
This was corroborated by TEM micrographs which showed that 
fibres with 5-FU were more heterogenous in their median 
diameter. Although the drug inclusion did not significantly impact 
the fibre morphology, further investigation via FTIR revealed that 
the amide I region did not shift substantially upon the inclusion of 
5-FU, both measurements showing only a weak binding to the 
drug molecule. ThT fluorescence and CD studies revealed that 
highly organised structures underpin the fibre morphology, with 
minimal change in the self-assembly observed in the presence of 
the drug. There was no clear correlation between the rates of 
release among different drugs and their hydrophilicities, which led 
to the hypothesis that the ability of drugs to engage in specific 
non-covalent interactions with the peptide caused faster drug 
release. This hypothesis was verified by MD simulations, where 
parallel and antiparallel stacks of DLFF were formed in the 
absence and presence of the drug. These simulations revealed 
π-π stacking between the F and 5-FU rings as well as dynamic 
hydrogen bonding between the carboxylic acid group and N1-H 
group of the 5-FU. The weakness of the π-π stacking and the 
inconsistent nature of the interim hydrogen bonds explain the 
fleeting interactions between the drug and the hydrogel and its 
relatively fast release. This work paves the way for future 
computationally informed studies of peptide/drug combinations 
with specific release profiles.  
 
Building on the F-zipper motif and adding additional functionality, 
Brito et al., studied the effects of o-glycosylation on self-
assembling peptides, FSF and FTF, as minimalistic models of 
glycoproteins (Figure 6a), To understand the conformational 
differences upon introduction of glycans, and to serve as building 
blocks for future materials that incorporate both sugars and 
peptides. In addition to the effect of the central amino acid on self-
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assembly, this study also examined the role that the conformation 
of the glycol had on the supramolecular organisation and 
consequent material's properties of multi-molecule ensembles. 
Once the variations in the assembly behaviour of the different 
systems were established, MD simulations were used to help 
rationalise the different assemblies and revealed that O-
glycosylation reduces the aggregation propensity due to the 
introduction of CH-π interactions, which compete with π-π 
interactions. Due to this difference in assembly, it was found that 
the glycosylated peptides formed aggregates with reduced 
stiffness as measured by atomic force microscopy (AFM) and 
higher thermal stabilities and corroborated by the calculated lower 
aggregation propensity. On measuring the CH-π, as well as the 
aromatic interactions in silico, and comparing it to the CD spectra, 
an aromatic zipper model similar to that suggested by 
Marchesan[68] was proposed for the aggregation of these 
tripeptides (Figure 6b). In addition to the reduced macroscopic 
stability of the assemblies and the lower aggregation propensity, 
details on the molecular level were also revealed. The XRD 
showed the disappearance of the -sheet peak in the glycosylated 
FSF and that of the aromatic interactions in FTF. This was in line 
with the reduction of H-bonds in the backbones of the 
glycosylated peptides observed in the MD studies (Figure 6c). 
This study of the specific role of glycosylation in aggregation, thus, 
enables the understanding of the molecular origin of glycoprotein 
interactions as the basis for functional glycopeptide materials.[74] 
 
Using the knowledge of aromatic dyads but looking to modify the 
peptides with non-peptidic functional biomolecules, Baek et al. 
studied 16 nucleopeptides, where the four nucleobases were 
attached to the N-termini of FFF, AFF, GFF and KFF.[75] In this 
work, TEM analysis demonstrated that most nucleopeptides could 
form nanofibres, and CD revealed helically dominant structures. 
The MD simulation of these systems showed that both peptide 
secondary structure (through backbone H-bonding) and DNA-like 
nucleobase stacking contributed to the stable, helically dominant 
fibres that formed hydrogels. This elucidation of interactions could 
feed into the further design of hybrid peptide/DNA materials that 
combine the advantages of both types of biomolecular 
assemblies. 
 
Peptide amphiphiles (PAs)[76], short peptides functionalised with 
alkyl tails, show predictable and robust self-assembly behaviours 
and are therefore well-suited to further expand the functionality of 
these material classes, informed by integrated computation and 
experiment. Freeman et al. studied supramolecular fibres of 
alkylated peptides with the alkyl chain forming the core of the fibre 
and the nonapeptide (V3A3K3) presented at the fibre surface 
(Figure 7a,b).[77] These PAs were further modified with 
complimentary units of DNA base pairs or charged amino acids 
which cross-link fibres via non-covalent linkages (Figure 7c).[34]  
The inclusion of the DNA base pairs causes the fibres to form 
twisted bundles with a residue-dependent pitch of twist. Scanning 
electron microscopy (SEM) shows fibres, and TEM having higher 
resolution shows them to be formed of multiple fibres twisted into 
bundles. A CGMD model where each DNA base is represented 
by a single bead was used to further investigate this phenomenon. 
Using CGMD, the pitch was measured as a function of the length 
of oligonucleotides and as a function of the fraction of monomers 
with attached oligonucleotides. This showed that increasing the 
length of the DNA base pairs increased the pitch, while increasing 
the percentage of monomers with oligonucleotides decreased the 
pitch (Figure 7d). These results agreed with experimental TEM 
observations and opened the door for further modification and 
tuning of the fibres' growth rate. The MARTINI forcefield was used 
to calculate the intramolecular energy for the formation of the 
fibres (Eintra, based on the calculated energy for the β-sheet 
formation and hydrophobic collapse). In contrast, the 

intermolecular energy associated with the bundling of the fibres 
(Einter) was calculated as the DNA hybridisation energy (estimated 
from an online calculator, OligoCalc[78]). Mapping these values to 
fibres of various compositions and their growth rates, a 3D map 
showed a very narrow range of 5 kBT < Einter < 10 kBT is required 
for twisted bundle growth (Figure 7e,f). Alternatively, a charge 
complimentary tripeptide (E3) was used in place of the DNA and 
combinations of complementary peptides nucleic acids (PNAs), 
thus showing the findings translate to other biomolecular 
conjugates. This decrease in electrostatic repulsion leads to more 
twisting resulting in a rod-like structure, compared to the more 
twisted-ribbon-like structure of the DNA-DNA systems. 
 
 
Computational approaches have informed the design of materials 
inspired by nature’s protein materials. Wu et al., investigated a 
method to produce biocompatible, spatio-temporally controlled 
microstructures composed of elastin-like polypeptides (ELK)[79,80]. 
To build additional functionality into these systems, they 
investigated the introduction of graphene oxide (GO, combined 
with (MESLLP-(VPGIG VPGIG VPGKG VPGIG VPGIG)24, 
ELK1)(Figure 8a,b). The resulting non-covalent bioconjugate 
composites have been found to reduce the cytotoxicity of GO 
critical for the potential uses of GO in medical treatments where it 
can be used as (conducting) biological scaffolding.[81] A MARTINI-
compatible coarse-grained GO model was developed to gain 
insights into the mode of co-assembly. This model revealed that 
the aggregation between ELK1 and GO was largely 
electrostatically driven by the interaction between negatively 
charged GO residues and positively charged lysine sidechains. 
Once the GO bioconjugate was stabilised,  the effect of 
introducing ethanol to the system at varied concentrations was 
investigated in order to reduce the GO (rGO) in order to increase 
conductance. [81] Wu et al. observed that the highest degree of 
reduction was found at 70 % ethanol, and by simulating the effect 
of the addition of an increasing percentage of ethanol in the 
solution, CGMD revealed that this concentration caused the 
largest degree of reorganisation of the protein, which resulted in 
pushing the GO sheets together to increase their reactivity. This 
effect is counter-intuitive as adding ethanol typically exfoliates 
GO; indeed, this effect was observed in the protein-free simulation. 
Following this structural revelation from the computational 
analysis of the system, this observation was confirmed by WAXS 
(Figure 8c), demonstrating how an iterative integrated 
collaborative effort between experimental and computational 
approaches can lead not only to new materials but a better 
understanding of existing materials.[81] 

 
 
 
Another mode of self-assembly involving IDPs is 
coacervation.[82,83] Coacervates are generally understood to 
appear due to LLPS, resulting in an aqueous phase loaded with 
liquid macrostructures typically that may have high- and low-
density regions. LLPS is a rapidly growing field where the rules 
for designing efficient systems are only now emerging. Critical 
distinctions between the self-assembly of ordered structures and 
LLPS peptides is that the formation of coacervates is strongly 
driven by the sidechain of the amino acid with little reliance on 
backbone H-bonding interactions, resulting in a globally 
disordered structure. One model that has been proposed and 
widely adopted is the sticker-and-spacer model, where stickers 
refer to segments of the peptide (typically hydrophobic and/or 
aromatic residues) that drive self-association and spacers 
connect the stickers (typically soluble polar residues) 
together.[1,84,85] The use of computational methods to help 
understand the sequence and patterning rules of LLPS (including 
the mapping mentioned above of the dipeptide sequence 
space[39]) is on the increase.   
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Figure 6. Conformer analysis of aromatic tripeptides and consequent self-assembly behaviour. a) Chemical structures of the o-
glycosylated, homo- and heterochiral tripeptides b) CD spectra of peptides (black) and o-glycosylated peptides (blue) c) Preferred 
conformations observed in the MD simulations, with the pie charts showing the fraction of 5000 structures adopting these 
conformations using a root-mean-square deviation (RMSD) linkage cut-off of 0.1 nm to define the clusters of conformations. d) 
Calculated and experimental CD spectra for FAF, FDIF and FDLF tripeptides. e) Favoured amphiphilic conformation (hydrophobic side 
chain in orange and hydrophilic backbone in blue) for self-assembling tripeptides and the two equally most stable conformations for 
FAF f) Ramachandran plot highlighting the most frequent conformations for the three tripeptides studied. Reproduced with permission 
from RSC 2012, Cell press 2018 and ACS 2021.  
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Figure 7. Reversible cross-linking and fibre twisting of modified PAs, (A) C16-V3A3K3-R, where R may be a DNA or peptide sequence 
(or a combination of the two). (B) membrane formation between high molecular weight polysaccharide hyaluronic acid (HA) and PA 
showing interface formation, followed by parallel nanofibre formation, which in turn leads to perpendicular nanofibre formation due to 
HA crossing the membrane via reptation[77] (C) The twisted bundle macrostructure is resolved by electron microscopy however using 
CGMD a much higher “resolution” is achievable revealing individual DNA base pairs or complimentary amino acid side chains 
interacting non-covalently and promoting fibre twisting. (D) The pitch of the twisted bundles can be controlled by the length of the 
linker group or a number of monomers containing a linker group (oligonucleotides in this example). (E) Twist bundle group rate as a 
function of Einter and Eintra showing formation within a narrow window, this part of the figure is taken directly from the publication. (F) 
Thick bundles form in the red area of (E) where the growth rate is high and Eintra & Einter = 8 (right). When the growth rate is low and 
only weak inter-fibre (Einter = 2) exists, larger bundles are not sustained. Reproduced with permission from AAAS 2008 and 2018.
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Figure 8. (A) GO and ELK1 models with the atomic structure of 
representative examples and repeating units of ELK1 and GO, 
respectively. (B) WAXS was used to determine interlayer 
spacing on the rGO sheets (blue), which matched the pattern of 
results found from (C) CGMD simulations of GO (black line) and 
GO-protein conjugate (blue line) in increasing concentrations of 
ethanol. GO simulations are in line with known phenomena of 
graphene oxide exfoliation whereby intercalation of drives 
exfoliation of the sheets.[91] Whereas GO sheets wrapped in 
ELK1 protein are compressed with increasing ethanol 
percentage. Compression/exfoliation is measured via Euclidean 
distances between the mean Z-positions of the sheets. (D) 
Interlayer distance of the rGO as measured by WAXS, the 
results match the trend of the pre-reduction conditions 
elucidated by CGMD in (C). Reproduced with permission from 
RSC 2012. 
 
Experimental work on coacervation has shown the correlation 
effect of polypeptide length, charge strength, and charge pattern 
on the degree of ionic coacervation.[86–89] In order to systematically 
study pattern design, Chang et al., studied the coacervation 
behaviour of 50-mers of E (poly-Glu) with 50-mers composed of 
G and K with the same net charge but different sticker-spacer 
patterns, e.g., repeating units of (KG), (KKGG) etc. They found 

that the entropic contribution of the coacervation matched 
qualitatively with the isothermal titration calorimetry (ITC) data, 
proving that the larger the "blocks" of charge in the copolymer 
sequence were, the more confined counterions were to these 
blocks. Their release resulted in a more significant entropy 
change. This sequence effect was due to differences in entropic 
confinement of condensed counterions along the polymer. Using 
a restricted primitive coarse-grained representation, Chang et al. 
measured the effective energy and entropy for a given salt 
concentration via Monte Carlo simulations. These results were 
found to be in line with experimental trends. The coacervation was 
determined by assessing whether the calculation of excess free 
energy due to the mixing of the peptides with the salt volume was 
less than the free energy of a non-phase-separated system. Thus, 
this work establishes design considerations that link sequence to 
the physical properties of complex electrostatic coacervates. This 
effect can be used to understand the effect of sticker-spacer 
lengths and propose more complex assemblies.[90] 
 
Another example of dynamic structures that are dominated by 
sidechain interactions is the concept of induced fit, where the 
presence of a ligand leads to structural reorganisation. Induced fit 
is typically associated with local reorganisation in proteins and 
has not received much attention in short peptides. Using phage 
display[92,93],  Kroiss et al. identified the unstructured peptide 
ADARYKS to exhibit a sequence-specific binding affinity for ATP 
using phage display techniques. This was the first known example 
of an ATP complexing short peptide identified through de novo 
selection and, remarkably, did not resemble any known 
nucleotide binder. It was found using MD H-bond analysis and 
NMR studies that the peptide interacts with ATP via the charged 
phosphate moiety and the aromatic ring of adenine. All the 
residues except the 3rd A in the peptide interact with ATP. It was 
also seen that the interactions between peptide and ATP were 
very dynamic, a finding that was further explored in a subsequent 
study.[94] In 2020, Kroiss et al. used a similar approach to develop 
computational predictions of heptapeptide binder to uridine 
triphosphate(UTP) from a large number of sequences. In this case, 
an improved selection method was used, using streptavidin-
coated paramagnetic beads and UTP-biotin ligands together with 
a magnetic rack to facilitate selection compared to the previous 
centrifugation approach. The peptide KAIHPMR-NH2 was 
demonstrated to form a stable, induced loop upon recognition of 
UTP. Binding was found to decrease the 1 and 7 residue distance 
of the investigated peptide KAIHPMR over time by a higher 
amount compared to other weaker binders. This illustrated the 
"induced fit" mode of binding that is often found in ligand binders 
in biology. In both studies, the binding constant values saw a 
strong correlation between experimental and computational 
values. [95] Subsequently, phage-display screening on self-
assembled ligands was used to identify oligo-peptides that 
selectively bind supramolecular targets over their unassembled 
counterparts by using 9-Fluorenylmethoxy-phenylalanine-
tyrosine-phosphate (Fmoc-FYp) micelles as targets. The lead 
peptide, KVYFSIPWRPM-NH2, was found to bind to the Fmoc-
FYp ligand exclusively in its self-assembled state with KD = 74 ± 
3 µM. Circular dichroism, NMR, and molecular dynamics 
simulations revealed that the peptide interacts through the KVYF 
terminus and this binding event disrupts the assembled 
structure[96]. 
 
In order to study the ability to produce disordered coacervates on 
demand, as well as the ability to include folded domains into 
overall disordered structures, Scott et al. studied a coacervation 
system of poly(S-alkyl-L-homocysteine) functionalised with 
different amino acids and poly(L-methionine)60 that each 
contained α-helical structures, and flexible side chain orientations, 
that could reversibly form coacervates in response to the oxidising 
or reducing environments. These template systems were 
specifically chosen for having a high level of tunability as they can 
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be reversibly converted to a disordered conformation upon mild 
oxidation to the sulfoxide derivative. Moreover, the side chains 
can undergo protonation and deprotonation within a physiological 
pH range, which is advantageous for the biologically relevant 
adjustment of physical properties. These polymers were observed 
via CD spectra to form α-helical structures using their CD spectra. 
Through MD simulations of a 15-mer of polyleucine, the variability 
in the observed RMSD values indicated that the side chains 
provide the required disorder in conformation despite the 
backbones showing helical structures. Further, experimentally, 
several compounds were found to phase separate in a pH and 
temperature-dependent manner with cloud point temperatures 
that decreased with increasing hydrophobicity of sidechain amino 
acids in the order V < L < F. These systems were also found to 
reversibly oxidise through cystine-cysteine interconversion, 
enabling the switchable coacervation. The authors demonstrated 
a series of tuneable and addressable coacervates where MD 
studies could be used to deconvolute the entropy of disorder that 
led to coacervation.[84] 
 
Schnitzer et al., explore design of peptide inspired metal-organic 
frameworks (MOFs) using oligoprolines complexing with zinc ions. 
Different lengths of oligoprolines were seen to form different 
combinations f cis and trans arrangements, leading to differences 
in the resultant nanosheets. This differs from conventional MOFs 
since the oligoproline ligands interact amongst themselves, as 
opposed to solely serving as spacers for the ion. Through energy 
decomposition and density functional theory analysis, they found 
the specific non-covalent interactions responsible for these 
differences, paving way for the design of further MOF materials. 
[97] 
 
Overall, the integration of computation and experiment can be 
informative at many levels in ordered and disordered systems. 
Examples discussed that would be impossible to study with the 
same level of confidence by relying exclusively on computation or 
experiment includes (i) prediction of assembly propensity, (ii) 
rational selection of sequence isomers and sequence edits, (iii) 
enhancing understanding of spectroscopy, (iv) connecting 
spectroscopy to microscopy across length scales, (v) 
understanding of design rules based on dynamic amino acid side 
chain interactions, as relevant to self-assembly, coacervation and 
induced fit.  
 

5. Where do we go from here 

Supramolecular chemists have recognised for decades that 
reversible bonds can replace covalent bonds, yielding dynamic 
functional materials with applications in materials science and 
biomedicine.[98–100] Peptides are excellent molecules for this 
purpose. However, identifying the sequences most suited to a 
particular problem is challenging because of the vastness of the 
biomolecular sequence space. Nature samples only a small 
subset by using natural selection to find and optimise the 
functional proteins in organisms. It is becoming clear that useful 
self-assembly modalities and materials with advanced non-
biological functionalities are also present in this same overall 
sequence space. Integration of computation and experiment 
provides ways to find and characterise them.  
 
While early work frequently focused on stable folds based on 
protein's secondary structures, there is increased interest in 
materials that occupy shallow energy landscapes so that they can 
more readily adapt to new conditions. In these cases, there is 
more emphasis on side chain interactions compared to stable H-
bonded backbone folds. Indeed, among the materials studied, the 
entire spectrum from supramolecular crystals and amyloids to 
structures that combine ordered and disordered domains to 

coacervates that have only transient structures have a high 
dependency on side chain-specific interactions. Each of these 
systems either benefits or have the potential to benefit from the 
emerging computational methods which can simulate systems 
from a few to millions of atoms. 
 
Moreover, the focus is increasingly on multicomponent systems 
with increased functionality and adaptiveness, overcoming 
potential barriers of homotypic assemblies and reducing 
synthesis costs. For example, the search space of tripeptide co-
assembly contains approximately the same combinatorial space 
as that of self-assembled hexapeptides. The possibility of 
including stimuli-responsive and induced fit moieties to a self-
assembling peptide without significantly altering the supra 
structure simplifies the design of new stimuli-responsive materials 
and medical treatments. Another area of interest is the 
development of self-assembling systems under non-aqueous 
conditions or heterogeneous media, including solid-liquid and 
liquid-gas interfaces, elevated temperatures, non-aqueous 
solvents and dry conditions. Computational models are currently 
primarily based on either vacuum or aqueous conditions; however, 
they can be parameterised to simulate any environmental 
conditions leading to broader applicability. These models are 
being employed more and more to drive systems investigation as 
their cost is typically far below that of the equivalent experiment. 
 
Materials and systems based on peptides have the potential to be 
produced using biotechnology approaches, ultimately offering the 
potential to avoid the use of petrochemical sources. [101,102] Thus, 
with the aid of computational approaches, machine learning, and 
increased experimentally derived insights, these materials are 
increasingly rationally accessible, and they will likely play a role in 
future green materials and nanotechnologies based on circular 
economy concepts.[103] 
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Peptides have many potential applications as building blocks in materials science and biomedicine since they 
organise into supramolecular structures. Advances in computational chemistry enable the mapping, searching 
and systematic evaluation of large sequence spaces to select viable candidates. Integration of computation and 
experiment provides understanding of specific interactions, enabling engineering of more versatile functional 
materials.  
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