15 research outputs found

    A genetically modified minipig model for Alzheimer's disease with SORL1 haploinsufficiency

    Get PDF
    The established causal genes in Alzheimer’s disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease’s initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%–3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD

    TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice

    No full text
    Herpes simplex viruses (HSVs) are highly prevalent neurotropic viruses. While they can replicate lytically in cells of the epithelial lineage, causing lesions on mucocutaneous surfaces, HSVs also establish latent infections in neurons, which act as reservoirs of virus for subsequent reactivation events. Immunological control of HSV involves activation of innate immune pattern-recognition receptors such as TLR3, which detects double-stranded RNA and induces type I IFN expression. Humans with defects in the TLR3/IFN pathway have an elevated susceptibility to HSV infections of the CNS. However, it is not known what cell type mediates the role of TLR3 in the immunological control of HSV, and it is not known whether TLR3 sensing occurs prior to or after CNS entry. Here, we show that in mice TLR3 provides early control of HSV-2 infection immediately after entry into the CNS by mediating type I IFN responses in astrocytes. Tlr3–/– mice were hypersusceptible to HSV-2 infection in the CNS after vaginal inoculation. HSV-2 exhibited broader neurotropism in Tlr3–/– mice than it did in WT mice, with astrocytes being most abundantly infected. Tlr3–/– mice did not exhibit a global defect in innate immune responses to HSV, but astrocytes were defective in HSV-induced type I IFN production. Thus, TLR3 acts in astrocytes to sense HSV-2 infection immediately after entry into the CNS, possibly preventing HSV from spreading beyond the neurons mediating entry into the CNS

    AQP9 expression in glioblastoma multiforme tumors is limited to a small population of astrocytic cells and CD15(+)/CalB(+) leukocytes

    Get PDF
    Contains fulltext : 125168.pdf (publisher's version ) (Open Access)Aquaporin-9 (AQP9) is a membrane protein channel that is permeable to a range of small solutes, including glycerol, urea and nucleobases. Expression of AQP9 in normal brain is limited, while widespread AQP9 expression has previously been reported in human glioblastoma. However, the specific cellular expression of AQP9 in glioblastoma remains unclear. In this study, we have examined microarrays to corroborate AQP9 mRNA expression in glioma. These analyses suggested that AQP9 mRNA expression in glioblastoma is primarily explained by tumor infiltration with AQP9 expressing leukocytes. Immunolabeling confirmed that within tumor regions, AQP9 was expressed in CD15(+) and Calgranulin B(+) leukocytes, but also in larger cells that morphologically resembled glioma cells. Specificity of immunoreagents was tested in recombinant cell lines, leukocyte preparations, and sections of normal human brain and liver tissue. Apparent AQP9(+) glioma cells were frequently observed in proximity to blood vessels, where brain tumor stem cells have been observed previously. A fraction of these larger AQP9 expressing cells co-expressed the differentiated astrocyte marker GFAP. AQP9 expressing glioma cells were negative for the brain tumor stem cell marker CD15, but were observed in proximity to CD15(+) glioma cells. AQP9 expression may therefore require signals of the perivascular tumor environment or alternatively it may be restricted to a population of glioma stem cell early progenitor cells

    A genetically modified minipig model for Alzheimer's disease with SORL1 haploinsufficiency

    No full text
    The established causal genes in Alzheimer's disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease's initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%–3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD

    Standardised definitions and diagnostic criteria for extra nodal extension on histopathological examination in head and neck cancer:HNCIG international consensus recommendations

    No full text
    Detection of extranodal extension on histopathology (pENE) in surgically treated head and neck squamous cell carcinoma (HNSCC) indicates poor prognosis. However, there is no consensus on the diagnostic criteria, interpretation and reporting pENE, which has contributed to conflicting evidence in the literature, and likely inconsistency clinically. The Head and Neck Cancer International Group conducted a three-round modified Delphi process with a group of 19 international pathology experts, representing 15 national clinical research groups, to generate consensus recommendations for pENE diagnostic criteria. The expert panel achieved strong agreement on terminology and diagnostic features for pENE and soft tissue metastasis. Moreover, the panel reached consensus on reporting of pENE and on nodal sampling.These consensus recommendations, endorsed by 19 organisations representing 34 countries, are a critical development towards more standardised diagnosis and reporting of pENE, and more accurate data collection and analysis.<br/
    corecore