33 research outputs found

    Investigation of direct drive hydraulics implemented in mining loader

    Get PDF
    The conventional mining loader is a diesel-hydraulic off-road mobile machine that is expected to routinely operate in enclosed areas. Such machines could benefit from more efficient hydraulic solutions. One avenue of improvement lies in electrification, which in itself is advantageous to underground mining machinery that would otherwise require expensive ventilation of their ICE exhaust. The high controllability of brushless DC motors allows direct pump control instead of conventional valve control, eliminating throttling losses. This work investigates the efficiency of such a direct-driven valveless hydraulic system for the front end of a mining loader and compares it to a conventional load-sensing system that was previously installed in the same machine. Economic viability of the described system is analyzed based on a real life working cycle, and the control software implemented as part of the work is described. The efficiency of the direct-driven system was determined to be superior in all tested cases, increasing from 21% to 53% at high velocity and from 2% to 22% at low velocity and maintaining a very flat efficiency curve over most loads and velocities. The direct drive hydraulic system is capable of energy regeneration, recouping a portion of energy used for lifting thus allowing longer runtimes with a given battery capacity. These advantages were found to be enough to offset the higher up-front cost except for equipment with lower than usual lifespans.Kaivoslastarit ovat usein dieselhydraulisia työkoneita, jotka monesti toimivat maanalaisissa kaivoksissa. Sähkökäyttöiset toimilaitteet ovat yksi mahdollinen tapa parantaa näiden koneiden energiatehokkuutta, eteenkin suljetuissa tiloissa, joissa polttomoottorin pakokaasujen tuulettamisesta aiheutuu huomattavia kustannuksia. Sähkömoottoreiden hyvä hallittavuus mahdollistaa venttiilittömän pumppuohjatun hydraulijärjestelmän, joka ei kärsi venttiilihäviöistä. Tämä työ vertailee pumppuohjattuja suoravetohydraulisia kaivoslastarin toimilaitteita saman lastarin alkuperäisiin kuormantuntevalla säädöllä toteutettuihin, keskittyen hyötysuhteeseen sekä suorituskykyyn. Näin muokatun lastarin taloudellista kilpailukykyä tarkastellaan oikean kaivostyösyklin avulla. Työn osana on myös rakennettu kaivoslastarin toimilaitteinen sähköinen hallintajärkestelmä, jonka rakenne ja toiminta esitetään. Pumppuohjatun hydraulisen järjestelmän hyötysuhteen havaittiin olevan nostotyössä parempi kaikissa tilanteissa hyötysuhteen noustessa nopeilla liikkeillä 21 prosentista 53:een, ja hitailla liikkeillä 2 prosentista 22:een. Pumppuohjattu hydrauliikka kykenee myös potentiaalienergian talteenottoon, mahdollistaen pidemmän käyntiajat samalla akkukapasiteetilla. Nämä edut ovat taloudellisesti riittäviä kompensoimaan laitteiston korkeamman hinnan lyhytikäistä kalustoa lukuunottamatta

    ”Vanhemmalla on voimakas rakkaudentunne lapseensa” : Riittävän vanhemmuuden määrittyminen tuomioistuinkontekstissa

    Get PDF
    Tässä pro gradu –tutkielmassa tarkastellaan vanhempien yhdessä oikeusavustajansa kanssa laatimia kirjallisia vastineita hallintotuomioistuimeen toimitettuun lapsen huostaanottohakemukseen. Tutkimuksen teoreettinen viitekehys rakentuu lastensuojelun, hallintotuomioistuinkäsittelyn sekä riittävän vanhemmuuden käsitteisiin. Tutkielman tavoitteena on tuottaa tietoa siitä, miten vanhemmat määrittelevät riittävää vanhemmuutta institutionaalisessa tuomioistuinkontekstissa. Tavoitteena on tuoda esiin, mitä ominaisuuksia riittävän vanhemmuuden määritelmään sisältyi kirjallisissa vastineissa sekä minkälaista toimintaa vanhempi liitti riittävään vanhemmuuteen. Tutkimus on laadullinen tutkimus, jossa aineiston analyysimenetelmänä on käytetty teorialähtöistä sisällönanalyysiä. Teoriasta on muodostettu analyysiä ohjaava teoriakehikko ja aineistosta on etsitty sen sisälle sopivia sekä sen ulkopuolelle jääviä teemoja. Tutkimuksen aineistona on 37 vanhemman kirjallista vastinetta hallintotuomioistuimeen toimitettuihin lapsen huostaanottohakemuksiin. Tutkimuksen keskeisimpinä tuloksina on seitsemän kirjallisissa vastineissa riittävää vanhemmuutta määrittävää teemaa. Useita teemoja esiintyi yhdessä vastineessa eikä mikään niistä yksistään määrittänyt riittävää vanhemmuutta. Neljä aineiston teemaa asettui elementeiltään teoriakehikon teemoihin: vanhemman ja lapsen suhde, lapsen tasapainoinen kehitys ja hyvinvointi, läheiset ihmissuhteet ja tukiverkosto sekä turvallinen kasvuympäristö. Kolme teemaa esiintyi aineistossa toistuvasti ja niin selkeästi, että ne nostetiin omiksi riittävää vanhemmuutta määrittäviksi teemoiksi teoriakehikon ulkopuolelle: päihteettömyys, institutionaalinen tuki sekä toisen vanhemman merkitys. Vaikka teemat olivatkin teoriakehikon ulkopuolisia, sisälsivät ne silti samoja elementtejä teoriakehikon teemojen kanssa

    Monitoring of radioactivity in the environment of Finnish nuclear power plants : Annual report 2019

    Get PDF
    This report describes the results of radiation monitoring carried out by the Radiation and Nuclear Safety Authority (STUK) in the environment of Fortum’s nuclear power plants in Loviisa and Teollisuuden Voima’s (TVO) nuclear power plants at Olkiluoto in 2019. STUK’s monitoring complements the monitoring of the radiation levels and radioactive substances in the environment of the plants conducted by the power plants. The monitoring is implemented by collecting samples from the land and marine environment in the vicinity of the power plants and of external air. In addition, the concentrations of radioactive substances in the bodies of inhabitants of the surrounding area of the power plant are monitored. The environmental samples are analysed in STUK’s laboratory. The analysis methods include gamma spectrometric and radiochemical analyses. In some of the collected samples, small quantities of radioactive substances originating from the power plant were found. There was no significant deviation from the environmental findings of the previous years in terms of the identified radioactive substances or their quantities. Radioactivity originating from the power plant observed in the environment is insignificant in terms of radiation exposure of the environment and people. The results of the release measurements reported by the nuclear power plants and the findings of the environmental monitoring carried out by the nuclear power plants themselves correspond to the findings of STUK’s environmental monitoring

    Monitoring of radioactivity in the environment of Finnish nuclear power plants : Annual report 2022

    Get PDF
    This report describes the results of radiation monitoring carried out by the Radiation and Nuclear Safety Authority (STUK) in the environment of the Loviisa and Olkiluoto nuclear power plants in 2022. STUK’s monitoring activities complement and verify the environmental monitoring and release measurements conducted by the power plants. The monitoring is implemented by collecting samples from the land and marine environment in the vicinity of the power plants and of outdoor air. In addition, the concentrations of radioactive substances in the bodies of inhabitants of the surrounding area of the power plant are monitored. The environmental samples are analysed in STUK’s laboratory. The radioactive substances contained in the collected samples are determined by gamma spectrometric and radiochemical analysis methods. In some of the collected samples, small quantities of radioactive substances originating from the power plant were found. There was no significant deviation from the environmental findings of the previous years in terms of the identified radioactive substances or their quantities. Radioactivity originating from the power plant observed in the environment is insignificant in terms of radiation exposure of the environment and people. The results of the release measurements reported by the nuclear power plants and the findings of the environmental monitoring carried out by the nuclear power plants correspond to the findings made by STUK as part of its own monitoring

    Ydinvoimalaitosten ympäristön säteilyvalvonta Suomessa : Vuosiraportti 2019

    Get PDF
    Tässä raportissa on kuvattu Säteilyturvakeskuksen (STUK) Fortumin Loviisan sekä Teollisuuden Voiman (TVO) Olkiluodon ydinvoimalaitosten ympäristössä suorittaman säteilyvalvonnan tulokset vuodelta 2019. STUKin suorittama valvonta täydentää voimalaitoksien suorittamaa laitoksen ympäristön säteilytasojen ja radioaktiivisten aineiden tarkkailua. Valvontaa suoritetaan keräämällä näytteitä voimalaitoksen lähialueen maa- ja meriympäristöistä sekä ulkoilmasta. Lisäksi seurataan voimalaitoksen lähiympäristön asukkaiden kehoissa olevien radioaktiivisten aineiden pitoisuuksia. Ympäristönäytteet analysoidaan STUKin laboratoriossa. Analyysimenetelminä käytetään gammaspektrometriaa ja radiokemiallisia analyysejä. Osassa kerättyjä näytteitä havaittiin vähäisiä määriä voimalaitoksesta peräisin olevia radioaktiivisia aineita. Havaitut radioaktiiviset aineet tai niiden määrät eivät poikenneet merkittävästi aiempina vuosina ympäristöstä tehdyistä havainnoista. Ympäristössä havaitulla voimalaitoksesta peräisin olevalla radioaktiivisuudella ei ole merkitystä ympäristön eikä ihmisten säteilyaltistukseen. Ydinvoimalaitosten raportoimien päästömittausten tulokset sekä ydinlaitosten itsensä suorittaman ympäristövalvonnan havainnot vastaavat STUKin suorittaman ympäristövalvonnan havaintoja

    Ydinvoimalaitosten ympäristön säteilyvalvonta Suomessa : Vuosiraportti 2022

    Get PDF
    Tässä raportissa on kuvattu Säteilyturvakeskuksen (STUK) Loviisan sekä Olkiluodon ydinvoimalaitosten ympäristössä suorittaman säteilyvalvonnan tulokset vuodelta 2022. STUKin suorittama valvonta täydentää ja varmentaa voimalaitoksien tekemää ympäristön tarkkailua sekä päästömittauksia. Valvontaa suoritetaan keräämällä näytteitä voimalaitoksen lähialueen maa- ja meriympäristöstä sekä ulkoilmasta. Lisäksi seurataan voimalaitoksen lähiympäristön asukkaiden kehoissa olevien radioaktiivisten aineiden pitoisuuksia. Ympäristönäytteet analysoidaan STUKin laboratoriossa. Kerättyjen näytteiden sisältämät radioaktiiviset aineet määritetään gammaspektrometrisia sekä radiokemiallisia analyysimenetelmiä käyttäen. Osassa kerättyjä näytteitä havaittiin vähäisiä määriä voimalaitoksesta peräisin olevia radioaktiivisia aineita. Havaitut radioaktiiviset aineet tai niiden määrät eivät poikenneet merkittävästi aiempina vuosina ympäristöstä tehdyistä havainnoista. Ympäristössä havaitulla voimalaitoksesta peräisin olevalla radioaktiivisuudella ei ole merkitystä ympäristön eikä ihmisten säteilyaltistukseen. Ydinvoimalaitosten raportoimien päästömittausten tulokset sekä ydinlaitosten suorittaman ympäristövalvonnan havainnot vastaavat STUKin omassa valvonnassaan tekemiä havaintoja.Denna rapport beskriver resultaten av strålövervakningen som Strålsäkerhetscentralen (STUK) utförde i miljön vid Lovisa och Olkiluoto kärnkraftverk år 2022. STUKs övervakning kompletterar och verifierar den miljöövervakning och utsläppsmätningar som kraftverket utför. Övervakningen genomförs genom insamling av prover från land- och havsmiljön i närheten av kraftverken och av utomhusluft. Dessutom övervakas koncentrationerna av radioaktiva ämnen i kropparna hos invånarna i kraftverkets omgivning. Miljöproverna analyseras i STUKs laboratorium. De radioaktiva ämnen som ingår i de insamlade proverna mätts med gammaspektrometriska och radiokemiska analysmetoder. I några av de insamlade proverna påträffades små mängder radioaktiva ämnen som härrörde från kraftverket. Det fanns ingen betydande avvikelse från tidigare års miljöfynd vad gäller de identifierade radioaktiva ämnena eller deras mängder. Radioaktivitet som härrör från kraftverket som observerats i miljön är obetydlig när det gäller strålningsexponering av miljö och människor. Resultaten av de utsläppsmätningar som rapporterats av kärnkraftverken och resultaten av den miljöövervakning som utförs av kärnkraftverken motsvarar de resultat som STUK gjort inom ramen för sin egen övervakning

    Ydinvoimalaitosten ympäristön säteilyvalvonta Suomessa : Vuosiraportti 2020

    Get PDF
    Tässä raportissa on kuvattu Säteilyturvakeskuksen (STUK) Loviisan sekä Olkiluodon ydinvoimalaitosten ympäristössä suorittaman säteilyvalvonnan tulokset vuodelta 2020. STUKin suorittama ympäristövalvonta ja mittaustoiminta täydentää ja varmentaa voimalaitoksien suorittamaa ympäristön tarkkailua sekä päästömittauksia. Valvontaa suoritetaan keräämällä näytteitä voimalaitoksen lähialueen maa- ja meriympäristöstä sekä ulkoilmasta. Lisäksi seurataan voimalaitoksen lähiympäristön asukkaiden kehoissa olevien radioaktiivisten aineiden pitoisuuksia. Ympäristönäytteet analysoidaan STUKin laboratoriossa. Kerättyjen näytteiden sisältämät radioaktiiviset aineet määritetään gammaspektrometrisia sekä radiokemiallisia analyysimenetelmiä käyttäen. Osassa kerättyjä näytteitä havaittiin vähäisiä määriä voimalaitoksesta peräisin olevia radioaktiivisia aineita. Havaitut radioaktiiviset aineet tai niiden määrät eivät poikenneet merkittävästi aiempina vuosina ympäristöstä tehdyistä havainnoista. Ympäristössä havaitulla voimalaitoksesta peräisin olevalla radioaktiivisuudella ei ole merkitystä ympäristön eikä ihmisten säteilyaltistukseen. Ydinvoimalaitosten raportoimien päästömittausten tulokset sekä ydinlaitosten suorittaman ympäristövalvonnan havainnot vastaavat STUKin omassa valvonnassaan tekemiä havaintoja

    Environmental Radiation Monitoring in Finland : Annual report 2020

    Get PDF
    This report is a national summary of the results of environmental radiation monitoring in Finland in 2020. In addition to the Radiation and Nuclear Safety Authority, results to the report has been provided by the Finnish Meteorological Institute regarding the total beta emission activity of outdoor air. The environmental radiological monitoring programme includes the continuous and automatic monitoring of the external dose rate, monitoring of radioactive substances and total beta activity in outdoor air as well as the regular radioactivity analysis of radioactive fallout, surface and domestic water, waste, milk and foodstuffs. The programme also includes the monitoring of radioactive substances within the human body and monitoring of the radon in indoor air. This report also includes summaries of the results of the Baltic Sea radioactivity monitoring and topical investigations of the sub-programmes part of environmental radiation monitoring. The 2020 results demonstrate that the artificial radioactive substances in the environment mostly originate from the Chernobyl disaster in 1986 and nuclear tests conducted in the atmosphere in the 1950s and 1960s, and the amount of these substances is decreasing in the living environment. During 2020, artificial radioactive substances were detected in outdoor air, especially in samples collected in Kotka. However, detections were also made at all other collection stations. In early March, several fission and activation products were detected in samples collected in Kotka and Imatra. At the end of April, the iodine isotope 131I was detected in a sample collected in Kotka. In mid-June, several activation and fission products were again detected in samples collected in Kotka and Helsinki. In July, the cobalt isotope 60Co was detected in a sample collected in Kotka. In early August, an isomer of the silver isotope 110mAg was detected, and in late August the caesium isotope 134Cs, both from samples collected in Kotka. 60Co and 131I were again detected in a sample collected in Kotka between September and October. In early December, 131I was widely detected, and was found in all samples except Helsinki. The origin of the August silver discovery was determined to be the Loviisa nuclear power plant. The origins of the other observations could not be established with certainty. The amounts of all the artificial radioactive substances observed during the year in outdoor air were extremely small and they do not have any impact on human health. The external radiation monitoring network worked well. Of the measuring station results, the external radiation monitoring data management system USVA collected more than 97% of the measurements produced at all measuring stations. Missing data was caused by equipment malfunctions or telecommunication problems. In 2020, the GM sensors of the monitoring network issued nine alarms. Three of the alarms were caused by radiographic testing. Three alarms occurred on the same day caused by exceptionally heavy rainfall in September in Western Finland. Two alarms were caused by measurement activity training with radiation sources, and the cause of the other one was unknown. No alarms came through the spectrometer network. The tritium contents in fallout and household water samples were small, in total 1 – 2 Bq/l. No 137Cs activity concentrations exceeding 600 Bq/kg were found in food samples. This concentration should not be exceeded when putting wild game, berries, mushroom and lake fish on the market. 137Cs from the Chernobyl disaster, natural radioactive substances and radioactive substances used at hospitals were observed in waste. Secretions from patients in the cancer clinics and isotope wards of hospitals using radionuclides migrate to wastewater treatment plants and are thus evident in waste. The radiation exposure caused by artificial radioactive substances in the environment in 2020 was under 0,02 mSv, which is low compared to Finns’ overall average dose of 5,9 mSv. The 2020 results demonstrate that there were no releases of radioactive substances into the environment during the year that would have any detrimental impact on human health or the environment in Finland. The primary source of radon (222Rn) in indoor air is the rock material containing uranium in the soil. High radon concentrations occur in buildings whose foundations are not sufficiently well sealed to prevent the entry of radon-carrying soil air. Radon is most effectively prevented by measures taken at the construction stage, i.e. by building the base floor structures to be leak-tight and installing radon piping under the floor slab. According to STUK’s measurements, radon concentrations in the indoor air of dwellings are lower than before. In 2020, the median for radon concentration in residential measurements was 95 Bq/m3 (2019 109 Bq/m3) and the average 188 Bq/m3 (2019 222 Bq/m3), and 17% (2019 21%) of measurements were greater than the reference value of 300 Bq/m3. The concentration values from the national radon database, which stores STUK’s radon measurement results from dwellings, overestimate the radon concentration values, because more measurements are carried out in the known areas of high radon concentration than in areas of low radon concentrationThe radon dose assessment method in indoor air changed in late 2018. Applying the new assessment method, the radon dose value in homes is 4 mSv per year while the previous method estimated the dose at 1,6 mSv annually. The determination of the average annual radiation dose to Finns is discussed in STUK publication STUK-A263 Suomalaisten keskimääräinen efektiivinen annos vuonna 2018 (The average effective dose received by Finns 2018)

    Environmental Radiation Monitoring in Finland : Annual Report 2022

    Get PDF
    YHTEENVETO Tämä raportti on yhteenveto ympäristön säteilyvalvonnan tuloksista Suomessa vuonna 2022. Tuloksia raporttiin ovat toimittaneet Säteilyturvakeskuksen lisäksi Ilmatieteen laitos ulkoilman kokonaisbeeta-aktiivisuudesta. Ympäristön säteilyvalvontaohjelma sisältää ulkoisen annosnopeuden jatkuvan ja automaattisen valvonnan, ulkoilman radioaktiivisten aineiden ja kokonaisbeeta-aktiivisuuden valvonnan sekä radioaktiivisen laskeuman, pinta- ja talousveden, jätelietteen, maidon ja elintarvikkeiden radioaktiivisuuden säännöllisen seurannan. Lisäksi ohjelmaan sisältyy ihmisen kehossa olevien radioaktiivisten aineiden seuranta sekä asuntojen sisäilman radonin seuranta. Tämä raportti sisältää myös yhteenvedot Itämeren radioaktiivisuusvalvonnan tuloksista ja ympäristön säteilyvalvontaan kuuluvien osaohjelmien aihekohtaisista selvityksistä. Vuoden 2022 tulokset osoittavat, että ympäristössä olevat keinotekoiset radioaktiiviset aineet ovat pääosin peräisin vuoden 1986 Tšernobylin onnettomuudesta ja ilmakehässä 1950- ja 1960-luvuilla tehdyistä ydinkokeista. Keinotekoisten radioaktiivisten aineiden määrä ympäristössä vähenee. Vuoden 2022 aikana neljässä ulkoilmasta kerätyssä näytteessä havaittiin vähäisiä määriä muualta kuin Tšernobylin ydinlaitosonnettomuudesta peräisin olevia keinotekoisia radioaktiivisia aineita. Havaittujen radioaktiivisten aineiden alkuperää ei voitu varmuudella selvittää. Vuoden aikana havaittujen keinotekoisten radioaktiivisten aineiden määrät ulkoilmassa olivat äärimmäisen pieniä eikä niillä ole vaikutuksia ihmisten terveyteen. Ulkoinen säteilyn valvontaverkko toimi hyvin. Mittausasemien tuloksista kerättiin ulkoisen säteilyn valvontatietojen hallintajärjestelmä USVAan yli 97 % kaikkien mittausasemien tuottamista mit-tauksista. Puuttuvat tiedot aiheutuivat laitehäiriöistä tai tietoliikenneongelmista. Vuoden 2022 aikana valvontaverkon GM-anturit hälyttivät kerran syyn ollessa tekninen vika. Spektrometriverkon kautta ei tullut hälytyksiä. Laskeuma- ja talousvesinäytteiden tritiumpitoisuudet olivat välillä 1 – 3 Bq/l. Elintarvikkeista ei havaittu yli 600 Bq/kg ylittäviä 137Cs:n aktiivisuuspitoisuuksia. Tätä pitoisuutta ei suositella ylitettäväksi, kun saatetaan markkinoille luonnonvaraista riistaa, metsämarjoja ja -sieniä sekä järvikaloja. Itämerestä kerätyissä näytteissä näkyy edelleen Tšernobylin onnettomuudesta peräisin oleva 137Cs. Kuten muissakin ympäristönäytteissä, Itämerestä kerättyjen näytteidenradioaktiivisuuspitoisuudet ovat laskussa. Jätelietteessä havaittiin Tšernobylin onnettomuudesta peräisin olevaa 137Cs:a, luonnon radioaktiivisia aineita ja sairaalasta käytettyjä radioaktiivisia aineita. Radionuklideja käyttävien sairaalojen syöpäklinikoiden ja isotooppiosastojen potilaiden eritteet kulkeutuvat jätevesipuhdistamoon ja näkyvät siten jätelietteissä. Ympäristön keinotekoisten radioaktiivisten aineiden aiheuttama säteilyaltistus vuonna 2022 oli alle 0,02 mSv, mikä on pieni suomalaisten vuotuiseen keskimääräiseen annokseen 5,9 mSv verrattuna. Vuoden 2022 tulokset osoittavat, että vuoden aikana ympäristöön ei tapahtunut sellaisia radioaktiivisten aineiden päästöjä, joilla olisi haittavaikutuksia ihmisen terveydelle tai ympäristölle Suomessa. Sisäilman radonin (222Rn) pääasiallinen lähde on maaperän uraanipitoinen kiviaines. Korkeita radonpitoisuuksia esiintyy niissä rakennuksissa, joiden perustusrakenteet eivät ole riittävän tiiviitä estämään radonpitoisen maaperän huokosilman pääsyn sisätiloihin. Tehokkaimmin radonia torjutaan rakennusvaiheen toimenpiteillä, eli rakentamalla alapohjarakenteet tiiviiksi ja asentamalla lattialaatan alle radonputkisto. STUKin mittauksissa vuonna 2022 asuntomittausten radonpitoisuuden mediaani oli 109 Bq/m3 ja 15 % radonpitoisuuden vuosikeskiarvoista oli suurempi kuin viitearvo 300 Bq/m3. Radonrekisteristä, johon tallennetaan STUKin tekemien asuntojen radonmittaustulokset, saadut pitoisuuksien tunnusluvut yliarvioivat kaikkien Suomen asuntojen radonpitoisuuksia, koska tunnettujen korkeiden radonpitoisuuksien alueilla asuntoja mitataan enemmän kuin matalien radonpitoisuuksien alueella. Suomalaisten keskimääräisen vuotuisen säteilyannoksen määrittämistä käsitellään STUKin julkaisussa STUK-A263 Suomalaisten keskimääräinen efektiivinen annos vuonna 2018.SAMMANDRAG Denna rapport är ett sammandrag av övervakningen av strålning i miljön i Finland 2022. Resultaten i rapporten kommer förutom från Strålsäkerhetscentralen även från Meteorologiska Institutet som har övervakat den totala betaaktiviteten i utomhusluften. Programmet för övervakning av strålning i miljön omfattar fortlöpande automatisk övervakning av den externa dosraten, övervakning av radioaktiva ämnen och den totala betaaktiviteten i utomhusluften samt regelbunden analys av radioaktivt nedfall och radioaktivitet i yt- och hushållsvatten, avloppsslam, mjölk och livsmedel. I programmet ingår dessutom uppföljning av radioaktiva ämnen i människokroppen och radon i inomhusluften i bostäder. Denna rapport innehåller också sammandrag av övervakningen av radioaktiviteten i Östersjön och särskilda utredningar från program gällande övervakningen av strålning i miljön. Resultaten för 2022 visar att de artificiella radioaktiva ämnena i miljön härrör främst från olyckan i Tjernobyl 1986 och från kärnvapenprov i atmosfären på 1950- och 1960-talet. Mängden artificiella radioaktiva ämnen i miljön minskar. Under 2022 kunde man i fyra prov observera små mängder artificiella radioaktiva ämnen i utomhusluften som inte härstammade från kärnkraftsolyckan i Tjernobyl. De observerade radioaktiva ämnenas ursprung kunde inte utredas med säkerhet. Mängderna artificiella radioaktiva ämnen i uteluften som mättes under året var extremt små och de har ingen som helst påverkan på människornas hälsa. Övervakningsnätverket för extern strålning fungerade bra. Av resultaten från mätstationerna samlades över 97 procent av de mätningar som alla mätstationer producerade i övervakningssystemet för extern strålning, USVA. Orsaken till att data saknades var störningar i utrustningen eller datakommunikationsproblem. Under 2022 larmade övervakningsnätets GM-detektorer en gång på grund av ett tekniskt fel. Spektrometernätverket gav inga larm. Tritiumhalterna i nedfalls- och hushållsvattenproven var 1 – 3 Bq/l. I livsmedel observerades inga aktivitetskoncentrationer av 137Cs som överskred 600 Bq/kg. Det rekommenderas att inte överskrida denna halt när vilt, skogsbär och skogssvamp samt insjöfisk släpps ut på marknaden. I proverna som samlats in från Östersjön syns fortfarande 137Cs som härstammar från olyckan i Tjernobyl. Liksom i andra miljöprover håller radioaktivitetshalterna i prov som samlats in från Östersjön på att sjunka. I avloppsslam upptäcktes 137Cs som härstammar från Tjernobyl, naturligt radioaktiva ämnen och radioaktiva ämnen som använts på sjukhus. Avföring och urin från patienter på cancerkliniker och isotopavdelningar på sjukhus som använder radionuklider hamnar på avloppsreningsverket och syns därför i avloppsslammet. Strålningsexponeringen från artificiella radioaktiva ämnen i miljön var 2022 under 0,02 mSv, vilket är lågt jämfört med den genomsnittliga stråldosen som finländarna får under ett år, 5,9 mSv. Resultaten för 2022 visar att det under året inte inträffade några sådana utsläpp av radioaktiva ämnen i miljön som skulle ha haft några skadeverkningar på människors hälsa eller på miljön i Finland. Radon (222Rn) i inomhusluften härstammar oftast från uranhaltigt stenmaterial i marken. Höga radonhalter förekommer i byggnader vars grundkonstruktion inte är tillräckligt tät för att förebygga att radonhaltig luft tränger in i huset. Det effektivaste sättet att bekämpa radon är genom att vidta åtgärder i byggnadsskedet och bygga ett tätt bottenbjälklag och montera ett radonrörverk under golvplattan. Vid STUKs mätningar 2022 var medianvärdet för radonhalten i bostäder 109 Bq/m3 och 15 procent av årsmedeltalen för radonhalten var över referensvärdet 300 Bq/m3. Nyckeltalen för halterna som fåtts från radonregistret dit STUKs radonmätningsresultat för bostäder sparas överskattar radonhalterna för alla bostäder i Finland, eftersom det görs fler mätningar i bostäder i sådana områden där man vet att radonhalten är hög än i områden med låga radonhalter. Fastställandet av finländarnas genomsnittliga årliga stråldos behandlas i STUK-publikationen STUK-A264 Den genomsnittliga effektiva dosen hos finländarna 2018SUMMARY This report is a summary of the results of environmental radiation monitoring in Finland in 2022. In addition to the Radiation and Nuclear Safety Authority, results to the report have been provided by the Finnish Meteorological Institute regarding the total beta emission activity of outdoor air. The environmental radiological monitoring programme includes the continuous and automatic monitoring of the external dose rate, monitoring of radioactive substances and total beta activity in outdoor air as well as the regular radioactivity analysis of radioactive fallout, surface and domestic water, sewage sludge, milk and food. The programme also includes the monitoring of radioactive substances found in the human body and monitoring of the radon in the indoor air of dwellings. This report also includes summaries of the results of the Baltic Sea radioactivity monitoring and topical investigations of the sub-programmes that are a part of environmental radiation monitoring. The 2022 results indicate that the artificial radioactive substances found in the environment are mostly from the Chernobyl disaster in 1986, and those in the atmosphere are from nuclear tests conducted in the 1950s and 1960s. The amount of artificial radioactive substances in the environment is decreasing. During 2022, four outdoor air samples detected minuscule amounts of artificial radioactive substances that originate from sources other than the Chernobyl nuclear facility disaster. The source of the radioactive substances detected could not be established with certainty. The amounts of the artificial radioactive substances detected in outdoor air during the year were extremely small, and they do not have any impact on human health. The external radiation monitoring network worked well. Of the measuring station results, more than 97% of the measurements produced at all measuring stations were collected in the external radiation monitoring data management system USVA. Any missing data was caused by equipment malfunctions or telecommunication problems. In 2022, the GM sensors in the monitoring network triggered an alarm, which was caused by a technical malfunction. No alarms came through the spectrometer network. The tritium concentrations in fallout and domestic water samples were in the 1 – 3 Bq/l range. In samples taken from foodstuffs, the 137Cs activity concentrations were found not to exceed 600 Bq/kg. It is a recommendation not to exceed this concentration when putting wild game, berries, mushroom and lake fish on the market. 137Cs originating from the Chernobyl disaster was observed in samples collected from the Baltic Sea. As in other samples collected from the environment, the radioactivity concentrations in samples collected from the Baltic Sea are decreasing. Sewage sludge was found to contain 137Cs originating from the Chernobyl disaster, natural radioactive substances and radioactive substances used at hospitals. Secretions from patients in the cancer clinics and isotope wards of hospitals using radionuclides migrate to wastewater treatment plants and are thus evident in sewage sludge. The radiation exposure caused by artificial radioactive substances in the environment was less than 0.02 in 2022, which is low compared to the average annual dose of 5.9 mSv in Finland. The 2022 results demonstrate that there were no releases of radioactive substances into the environment during the year that would have any detrimental impacts on human health or the environment in Finland. The primary source of radon (222Rn) in indoor air is the rock material containing uranium in the soil. High radon concentrations occur in buildings whose foundations are not sufficiently well-sealed to prevent the entry of radon-carrying soil air into the indoor spaces. Radon is most effectively prevented by measures taken at the construction stage, i.e. by building the base floor structures to be leak-tight and installing radon piping under the floor slab. In the measurements carried out by STUK in 2022, the median for radon concentration in residential measurements was 109 Bq/m3 and 15% of the annual averages for radon concentration were greater than the reference value of 300 Bq/m3. The concentration key figures available from the radon database, which stores the results of the radon measurement that STUK conducts on dwellings, overestimate the radon concentrations of all dwellings in Finland, because more measurements are carried out in areas of known high radon concentration than in areas of low radon concentration. The determination of the average annual radiation dose to Finns is discussed in STUK publication STUK-A263 Suomalaisten keskimääräinen efektiivinen annos vuonna 2018 (Average effective dose of Finns in 2018)

    Ympäristön säteilyvalvonta Suomessa : Vuosiraportti 2020

    Get PDF
    Tämä raportti on yhteenveto ympäristön säteilyvalvonnan tuloksista Suomessa vuonna 2020. Tuloksia raporttiin ovat toimittaneet Säteilyturvakeskuksen lisäksi Ilmatieteen laitos ulkoilman kokonaisbeeta-aktiivisuudesta. Ympäristön säteilyvalvontaohjelma sisältää ulkoisen annosnopeuden jatkuvan ja automaattisen monitoroinnin, ulkoilman radioaktiivisten aineiden ja kokonaisbeeta-aktiivisuuden monitoroinnin sekä radioaktiivisen laskeuman, pinta- ja talousveden, jätelietteen, maidon ja elintarvikkeiden radioaktiivisuuden säännöllisen seurannan. Lisäksi ohjelmaan sisältyy ihmisen kehossa olevien radioaktiivisten aineiden seuranta sekä asuntojen sisäilman radonin seuranta. Tämä raportti sisältää myös yhteenvedot Itämeren radioaktiivisuusvalvonnan tuloksista ja ympäristön säteilyvalvontaan kuuluvien osaohjelmien aihekohtaisista selvityksistä. Vuoden 2020 tulokset osoittavat, että ympäristössä olevat keinotekoiset radioaktiiviset aineet ovat pääosin peräisin vuoden 1986 Tšernobylin onnettomuudesta ja ilmakehässä 1950- ja 1960-luvuilla tehdyistä ydinkokeista ja aineiden määrä vähenee elinympäristössä. Vuoden 2020 aikana ulkoilmassa havaittiin keinotekoisia radioaktiivisia aineita erityisesti Kotkassa kerätyistä näytteistä. Havaintoja tehtiin kuitenkin myös kaikilla muilla keräysasemilta Maaliskuun alussa havaittiin useita fissio- ja aktivaatiotuotteita Kotkassa ja Imatralla kerätyistä näytteistä. Huhtikuun lopulla Kotkassa kerätystä näytteestä havaittiin jodin isotooppia 131I. Kesäkuun puolessa välissä havaittiin jälleen useita aktivaatio- ja fissiotuotteita Kotkassa ja Helsingissä kerätyistä näytteistä. Heinäkuussa Kotkassa kerätystä näytteestä havaittiin koboltin isotooppi 60Co. Elokuun alussa havaittiin hopean isotoopin isomeeri 110mAg ja elokuun lopulla cesiumin isotooppi 134Cs, kumpikin Kotkassa kerätyistä näytteistä. Syyskuun ja lokakuun vaihteessa Kotkassa kerätystä näytteestä havaittiin jälleen 60Co ja 131I. Joulukuun alussa havaittiin laajalti 131I, joka havaittiin kaikista muista paitsi Helsingissä kerätyistä näytteistä. Elokuun hopeahavainnon alkuperäksi määritettiin Loviisan voimalaitos. Muiden havaintojen alkuperää ei voitu varmuudella selvittää. Kaikkien vuoden aikana havaittujen keinotekoisten radioaktiivisten aineiden määrät ulkoilmassa olivat äärimmäisen pieniä eikä niillä ole vaikutuksia ihmisten terveyteen. Ulkoinen säteilyn valvontaverkko toimi hyvin. Mittausasemien tuloksista kerättiin ulkoisen säteilyn valvontatietojen hallintajärjestelmä USVAan yli 97 % kaikkien mittausasemien tuottamista mittauksista. Puuttuvat tiedot aiheutuivat laitehäiriöistä tai tietoliikenneongelmista. Vuoden 2020 aikana valvontaverkon GM-anturit hälyttivät yhdeksän kertaa. Kolme hälytyksistä aiheutui radiografisista kuvauksista. Kolme hälytystä tuli saman päivän aikana poikkeuksellisen rankoista sateista syyskuussa Länsi-Suomessa. Kaksi hälytystä aiheutui mittaustoiminnan harjoittelusta säteilylähteillä ja yhden syy jäi tuntemattomaksi. Spektrometriverkon kautta ei tullut hälytyksiä. Laskeuma- ja talousvesinäytteiden tritiumpitoisuudet olivat pieniä, yleensä 1 – 2 Bq/l. Elintarvikkeista ei havaittu yli 600 Bq/kg ylittäviä 137Cs:n aktiivisuuspitoisuuksia. Tätä pitoisuutta ei tulisi ylittää, kun saatetaan markkinoille luonnonvaraista riistaa, metsämarjoja ja -sieniä sekä järvikaloja. Jätelietteessä havaittiin Tšernobylin onnettomuudesta peräisin olevaa 137Cs:a, luonnon radioaktiivisia aineita ja sairaalasta käytettyjä radioaktiivisia aineita. Radionuklideja käyttävien sairaalojen syöpäklinikoiden ja isotooppiosastojen potilaiden eritteet kulkeutuvat jätevesipuhdistamoon ja näkyvät siten jätelietteissä. Ympäristön keinotekoisten radioaktiivisten aineiden aiheuttama säteilyaltistus vuonna 2020 oli alle 0,02 mSv, mikä on pieni suomalaisten vuotuiseen keskimääräiseen annokseen 5,9 mSv verrattuna. Vuoden 2020 tulokset osoittavat, että vuoden aikana ympäristöön ei tapahtunut sellaisia radioaktiivisten aineiden päästöjä, joilla olisi haittavaikutuksia ihmisen terveydelle tai ympäristölle Suomessa Sisäilman radonin (222Rn) pääasiallinen lähde on maaperän uraanipitoinen kiviaines. Korkeita radonpitoisuuksia esiintyy niissä rakennuksissa, joiden perustusrakenteet eivät ole riittävän tiiviitä estämään radonpitoisen maaperän huokosilman pääsyn sisätiloihin. Tehokkaimmin radonia torjutaan rakennusvaiheen toimenpiteillä, eli rakentamalla alapohjarakenteet tiiviiksi ja asentamalla lattialaatan alle radonputkisto. Asuntojen sisäilman radonpitoisuudet ovat STUKin mittauksissa aikaisempaa pienempiä. Vuonna 2020 asuntomittausten radonpitoisuuden mediaani oli 95 Bq/m3 (v. 2019 109 Bq/m3) ja keskiarvo 188 Bq/m3 (v. 2019 222 Bq/m3 ) ja 17% (v. 2019 21%) mittauksista oli suurempi kuin viitearvo 300 Bq/m3. Kansallisesta radontietokannasta, johon tallennetaan STUKin tekemien asuntojen radonmittaustulokset, saadut pitoisuudet yliarvioivat radonpitoisuuksia, koska tunnettujen korkeiden radonpitoisuuksien alueilla asuntoja mitataan enemmän kuin matalien radonpitoisuuksien alueella. Sisäilman radonista aiheutuvan annoksen arviointitapa muuttui vuoden 2018 lopussa. Uudella arviointitavalla saadaan radonin kodeissa aiheuttaman annoksen arvioksi 4 mSv vuodessa, kun aiemmin käytössä olleella tavalla annokseksi arvioitiin 1,6 mSv vuodessa. Suomalaisten keskimääräisen vuotuisen säteilyannoksen määrittämistä käsitellään STUKin julkaisussa STUK-A263 Suomalaisten keskimääräinen efektiivinen annos vuonna 2018
    corecore