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Abstract 

The conventional mining loader is a diesel-hydraulic off-road mobile machine that is 
expected to routinely operate in enclosed areas. Such machines could benefit from more 
efficient hydraulic solutions. One avenue of improvement lies in electrification, which in 
itself is advantageous to underground mining machinery that would otherwise require 
expensive ventilation of their ICE exhaust. The high controllability of brushless DC 
motors allows direct pump control instead of conventional valve control, eliminating 
throttling losses. This work investigates the efficiency of such a direct-driven valveless 
hydraulic system for the front end of a mining loader and compares it to a conventional 
load-sensing system that was previously installed in the same machine. Economic 
viability of the described system is analyzed based on a real life working cycle, and the 
control software implemented as part of the work is described. 
The efficiency of the direct-driven system was determined to be superior in all tested 
cases, increasing from 21% to 53% at high velocity and from 2% to 22% at low velocity 
and maintaining a very flat efficiency curve over most loads and velocities. The direct 
drive hydraulic system is capable of energy regeneration, recouping a portion of energy 
used for lifting thus allowing longer runtimes with a given battery capacity. These 
advantages were found to be enough to offset the higher up-front cost except for 
equipment with lower than usual lifespans. 
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Tiivistelmä 

Kaivoslastarit ovat usein dieselhydraulisia työkoneita, jotka monesti toimivat 
maanalaisissa kaivoksissa. Sähkökäyttöiset toimilaitteet ovat yksi mahdollinen tapa 
parantaa näiden koneiden energiatehokkuutta, eteenkin suljetuissa tiloissa joissa 
polttomoottorin pakokaasujen tuulettamisesta aiheutuu huomattavia kustannuksia. 
Sähkömoottoreiden hyvä hallittavuus mahdollistaa venttiilittömän pumppuohjatun 
hydraulijärjestelmän, joka ei kärsi venttiilihäviöistä. Tämä työ vertailee pumppuohjattuja 
suoravetohydraulisia kaivoslastarin toimilaitteita saman lastarin alkuperäisiin 
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53:een, ja hitailla liikkeillä 2 prosentista 22:een. Pumppuohjattu hydrauliikka kykenee 
myös potentiaalienergian talteenottoon, mahdollistaen pidemmän käyntiajat samalla 
akkukapasiteetilla. Nämä edut ovat taloudellisesti riittäviä kompensoimaan laitteiston 
korkeamman hinnan lyhytikäistä kalustoa lukuunottamatta. 
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Notation 
 

𝐶ℎ𝑦𝑏 [€] Capital costs of the hybrid mining loader 

𝐶𝑐𝑜𝑛𝑣  [€] Capital costs of the conventional option 

𝐸𝑡𝑜𝑡 [J] Total cycle energy 

𝐹𝑐𝑦𝑙 [N] Combined force acting on lifting cylinders 

𝑃𝑖𝑛 [W] Power input to system (engine) 

𝑃𝑜𝑢𝑡 [W] Power output (lifting) 

𝑅𝑐𝑜𝑛𝑣 [€/month] Monthly running costs of the conventional loader 

𝑅ℎ𝑦𝑏 [€/month] Monthly running costs of the hybrid loader 

𝑡𝑅𝑂𝐼  [month] Time to return of investment (payback time) in months 

𝜂 [ ] Efficiency 

 

 

Abbreviations 
 

BLDC  Brushless direct current (motor) 

BMS  Battery management system 

CAN  Controller area network 

DDH  Direct drive hydraulics 

ICE  Internal combustion engine 

LHD  Load-haul-dump 

PID  Proportional-integral-derivative (controller) 

PMSM  Permanent magnet synchronous motor 

Pp  Percentage point 

ROI  Return of investment 

UI  User interface  
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1 Introduction 
 

Hydraulics are widely used in mobile working machines for their power and utility. 

Historically, the efficiency of such systems has not always been a priority in their design, 

with power, working ability and cost being the more pressing concerns. A trend towards 

increased efficiency in these systems is driving not only innovation of improved 

hydraulics but also novel solutions for replacing current hydraulic systems. Whether 

driven by economic, environmental or regulatory pressures, it is clear that there exists 

considerable demand for solutions that improve upon classic hydraulic systems used in 

working machines. 

 

In Europe, the first legal measures against emissions of road vehicles were taken in 1970 

[1], with the ongoing and increasingly stringent European emissions standards putting 

hard limits on emissions of new vehicles sold [2]. Similar legislation in other large 

markets such as China [3] and the US [4] ensue strong interest in emission reductions. 

Unlike road automobiles, where economic and the aforementioned legal considerations 

combined with the more limited resources of private owners have long since created a 

demand for higher efficiencies, off road working machines have traditionally exhibited 

poor energy efficiency [5].  

 

A method for improving the efficiency of working machines is to apply hybridization, 

which can combine the different capabilities and strengths of several systems. Working 

machines employing some form of hybrid technology and/or energy recovery have only 

recently appeared in the marketplace with offerings from Hitachi[6], Cat[7], Sandvik[8] 

and Volvo[9] among others, using various technologies ranging from energy recovery 

based on capacitors and hydraulic accumulators to plug-in electrohydraulics. For 

example, Hitachi’s ZH200-5B excavator uses a capacitor bank charged by swing 

movement deceleration to assist that movement or general hydraulic power, whereas 

Cat’s 336E H excavator uses a hydraulic accumulator for similar tasks. Sandvik uses a 

different approach for their DD422iE mining jumbo, with a wholly electric power system 

but with hydraulic actuators. These systems either use energy regeneration and power 

assist to allow more efficient ICE operation or eliminate the ICE completely. 

 

In the Tubridi mining loader prototype, diesel-electric hybridization has been proposed 

to gain advantages of engine downsizing, battery assist and kinetic energy regeneration, 

much in the same way as modern hybrid passenger vehicles. An electric direct drive 

hydraulic (DDH) system has been designed and built to power the working implements 

of the loader. Electric DDH can present an opportunity to realize the benefits of full 

electric hybridization when more comprehensive energy regeneration and higher 

efficiency for runtime on batteries is desired, such as in the presented mining loader case. 

 

Using conventional hydraulics in a working machine with a hybrid drivetrain would be 

wasteful, as battery energy limitations place added emphasis on efficiency. Furthermore, 

without methods of energy regeneration some of the benefits associated with 

hybridization are lost. A system suitable for powering working implements while 

maintaining high efficiency and complementing the hybrid vehicle is needed. 

 

While there has recently been much development in the field of electric working 

machines, they have mostly been confined to either partial hybridization with limited 

energy storage and recovery capacities or fully electric vehicles. While these solutions 

might be adequate for special cases such as excavators and mining jumbos which do not 

move long distances during their work, machines which do could benefit greatly from full 

hybridization and energy recovery from all their movements.  
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The DDH system combines shock- and overload tolerance and compact size of hydraulics 

with the flexibility and high efficiency of electric drives, being readily suitable to hybrid 

platforms already equipped with high capacity batteries. Equipping a hybrid working 

machine with DDH implements could thus be cost efficient as well as increase battery 

runtime due to better efficiency and energy regeneration.  In the presented mining loader 

case, this would have the additional benefit of completing all or part of the underground 

working cycle on batteries, reducing the need to ventilate ICE exhaust which is a 

significant cost in mining operations [10]. The work of a conventional mining loader 

consists of digging and dumping actions separated by travel between the dumping ground 

and mine itself. This cycle, consisting of periodic and predictable actions which are partly 

performed in a poorly ventilated area, lends itself well to the capabilities of hybrid 

vehicles. 

 

The goal of this this thesis is to assess the feasibility of the DDH system in terms of its 

efficiency in a synthetic working cycle. To accomplish this goal, the thesis will compare 

the efficiency of the DDH system with that of the conventional load sensing setup at 

different velocities and loads, spanning the practical range allowed by the machine 

specifications. Thermal considerations are not expressly investigated, due to the difficulty 

of doing so with an immobile full size 14-tonne experimental setup. From these results 

conclusions are drawn on the suitability of the DDH system for use in off-road working 

machines in comparison to more traditional load sensing hydraulics. The DDH system is 

investigated on its own merits, as well as suitability for use in the case of an underground 

mining loader. Due to their importance in adopting emerging technologies, economic 

considerations of equipping working machines with the DDH system are also 

investigated, especially in concert with electric hybridization are investigated since there 

are notable synergistic benefits to be realized with such an approach. 

 

Feasibility of the DDH system is investigated by determining its ability to do work and 

the efficiency at which this work is performed. Efficiency is determined with synthetic 

working cycles, during which the system input and output power is recorded. These cycles 

are repeated with different weights and velocities to characterize the operating envelope 

of the DDH units. There are two different cycles, one focuses on comparing the DDH 

system with the conventional load sensing system, and the other on the DDH system 

performance with a wider range of parameters. These cycles are discussed further in more 

detail. 

 

The economic consideration focus on determining the time to return of investment for a 

hypothetical hybrid mining loader equipped with a DDH powered frontend, and 

indicating which factors affect it the most. This way, the DDH system is evaluated based 

on its financial attractiveness. 

 

Since a plug-in hybrid vehicle does by its nature require far more sophisticated electronic 

and software controls than the original donor vehicle did, such a system is also created 

and described in this work. The purpose of this control program is to bring together and 

operate all the sensors, actuators and controllers required for the scope of this work in a 

safe and operator-friendly manner and allow for the information gathering needed to draw 

conclusions about the system's capabilities. The resulting software greatly eases logging 

of all sensor data, troubleshooting any hardware problems and operating the loader itself, 

while implementing many safety features making the vehicle more fail-safe than fail-

deadly in the event of hardware or software failure. 
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The rest of this thesis is divided into 10 chapters. Chapter 2 reviews the current state of 

the art, including the methods currently used to improve the efficiency of mobile working 

machines. Chapter 3 describes the physical test system, with special attention given to the 

custom manufactured components and their characteristics. This chapter also provides an 

overview of the most critical components. Chapter 4 details the software control system 

designed during this work, its purpose, capabilities, limitations and methods of operation. 

Chapter 5 describes the methods and procedures for measuring, as well as presents the 

cycle used to simulate normal working conditions. Chapter 6 presents the measurement 

results. In chapter 7 measurement data is used to determine the performance and 

efficiency of the proposed system. The chapter also includes comments on the data itself 

and any anomalies. Complementing the empirical research, the next chapter is about the 

economic considerations of using the proposed setup with two cases. The first 

investigates possible generalized economic advantages of using DDH, while the second 

focuses on those of DDH implemented in a hypothetical mining loader working in a 

closed mine. Chapter 8 discusses the results. Chapter 9 discusses the main findings and 

potential advantages of the proposed system, including possible improvements and 

applications for DDH technology, comparisons to other approaches as well as possible 

future developments. In addition, it includes a short future outlook section where the 

possibilities of DDH technology is discussed. Chapter 10 provides a conclusion to the 

research goals of this paper 

 

During this thesis two conference publications were published: 

 

1.  A.Turunen, T.Minav, H.Häninen, M.Pietola, (2018), Experimental investigation of 

direct drive hydraulic units implemented in a mining loader, GFPS, Samara, Russia, 

July 2018 

2.  T. Martinovski, T. Sourander, A. Turunen, T. Minav, M. Pietola, (2018), Control 

strategy for a direct driven hydraulics system in the case of a mining loader in IFK, 

March 2018, Aachen, Germany. 
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2 State of the art 
 

 

This chapter examines the current zeitgeist in increasing the energy efficiency of mobile 

working machines as well as current and near future alternatives for diesel vehicles with 

that goal, focusing mainly on LHD’s and mining trucks. 

 

Currently there exist two major drives to use other options: economic and legislative. For 

the economic side, any energy efficient system has the potential to save money through 

lower energy costs, be they diesel, electric or other. Any technology reducing ICE usage 

also offers the chance to reduce ventilation costs in addition to the obvious fuel cost 

savings. These savings can be significant as they cut into what can amount to 40% of the 

total energy cost of the mine [10] and 60% of the total power consumption [11], [12].  

Continuously tightening environmental regulations provide a legal incentive to look at 

other options then ICE. In the European Union, Stage V regulations for non-road mobile 

machinery come into effect in 2019-2020. Similar regulations exist abroad with the 

EPA’s Tier IV for the USA, and in China by the China VI standard [13], [14], [3]. These 

regulations make ICE alternatives more attractive due to the increased cost, complexity 

and maintenance requirements of compliant engines. 

 

There are also novel, yet unrealized specialized cases such as seabed mining which 

preclude the use of ICE’s. Depending on when and if these materialize, the vehicles used 

can either drive or benefit from progress made in more conventional mining [15]. 

  

A great majority of underground mining vehicles are diesel powered due to the versatility 

and high autonomy of ICE vehicles [16]. Hydraulics are ubiquitous for powering working 

implements such as booms, buckets and the arms of a mining jumbo. Their compactness 

and ability to handle shock loads commonplace in mining make them indispensable. Any 

significant alternatives could not be found, with the exception of electrical actuators for 

lighter duty [9]. This is a big part of the DDH value proposition, combining the good 

practical qualities of hydraulics with the efficiency and controllability of modern electric 

drives. 

Fortunately for those developing alternatives, electric traction technology in mining 

loaders and trucks is well developed, with both loaders and trucks, especially the larger 

ones, already using a diesel-electric transmission [17]. There are currently four main types 

of technologies available for mobile working machines in addition to pure ICE power 

[18] 

• Tethered electric (umbilical cable) 

• Battery electric 

• Trolley line 

• Hybrid electric 

 

Each of these has varying levels of adoption, interest and potential. Paraszczak also 

mentions fuel cell powered vehicles as an option. Since the characteristics of the 

technology currently make it more suitable as a component of a hybrid system, and as no 

major developments relying solely on them was found, this category is ignored [19]. 

 

2.1 Tethered electric 

 

Tethered electric vehicles are powered by a trailing cable, allowing unrestricted operating 

times at the cost of low autonomy and high infrastructure requirements, and are the most 

common type of non-ICE LHD in use today [18]. According to Jacobs et al, electric 
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LSH’s can reach operating costs 30% lower than their ICE counterparts in underground 

mines [20]. Due to the longer distances driven by trucks, they are not feasible applications 

for this technology. 

 

Examples of tethered mining loaders include the Sandvik LH514E and LH625E as well 

as the Atlas Copco Scooptram EST1030 and EST3.5. The tethered LHD’s are common 

enough to be the default when discussing “electric” LHDs. 

 

2.2 Battery electric 

 

 

Battery electric vehicles are those that rely completely on their onboard battery storage. 

Although not traditionally used in mining, there has been interest and research in them 

for quite some time [21]. These vehicles have higher practical autonomy than tethered 

vehicles but are still limited by the battery capacity. Furthermore, since their operating 

time is likewise limited, they often cannot complete a normal 8-12 - hour shift requiring 

a larger fleet per work done [18]. It must be noted that this 2014 source discounted 

lithium-ion batteries with their higher energy densities as not yet applicable to vehicles 

even as they are currently mass produced for commercial road vehicles [22]. In addition, 

Artisan Vehicles has launched the Z40 battery electric haul truck in 2018, which they 

promise can complete a full shift on a single charge in “good conditions” as well as using 

a battery swap system to facilitate longer continuous operation. [23]. While as of now 

quite unproven, the Z40 is a part of the broader trend of increasing electric vehicle 

autonomy, and battery electric haulage trucks will most likely find their niche in the near 

future. Due to the superior energy density of lithium batteries, they are currently the most 

viable choice for battery electric vehicles requiring good autonomy. This does lead to 

some concerns about the supply of raw material for widespread adoption as well as the 

environmental concerns of battery waste. The current state of art in lithium battery 

recycling allows for a high portion of materials to be reused, including nearly 100% of 

the lithium and more than 90% of cobalt by weight [24], with the toxic and expensive 

cobalt being particularly noteworthy. Mass use of lead-acid batteries has resulted in an 

efficient recycling system for them, and such an industry is growing around nickel-based 

batteries as large amounts of them reach their end of life. Since resource supply does not 

seem to be an overt constrain during this century [25], it would be very prudent and 

advantageous for such a system to be developed for lithium batteries [26]. 

 

Examples of battery electric mining loaders include the RDH-Scharf Muckmaster 600EB 

and 300EB [27], Artisan Vehicles A10 and A3 [28], [29] and the Atlas Copco ST7 

Battery. [30] Battery electric haul truck include the early the very recent 2018 Artisan 

Z40 [23] and the RHD-Scharf Haulmaster 800 [31]. Although not an underground 

vehicle, the Volvo HX2 with autonomous capability deserves a mention [32]. 

 

2.3 Trolley line 

 

Trolley line powered vehicles enjoy similar advantages as those equipped with umbilical 

cables. In addition, they can cover much greater distances due to not being constrained 

by the cable reel, at the cost of even higher infrastructure requirements in the form of the 

trolley line itself. This lends itself much better to mining trucks than to LHD’s: the trucks 

longer driving distance within the mine is achievable, they use the same stretches of 

trolley-equipped path and do not need to operate long beyond it, unlike LHD’s. This 

technology has found successful applications as early as 1985 in the form of Kiruna 
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trucks’ electric offerings [33], [16]. Although Paraszczak’s sources are unverifiable, he 

claims that experience with these trucks at the Coleman, Creighton and Stillwater mines 

in Canada and the US have been positive. As reported, electric trolley trucks have 

significantly higher performance, with electric 50-ton units managing 16 km/h on a 14% 

grade compared to only 9 km/h of equivalent diesel ones. The faster cycle times result in 

a smaller fleet for a given volume moved. Some of the referenced fleets include newer 

Kiruna (now Atlas Copco) designed around 2007 [34]. Trolley line mining vehicles are 

not limited underground, with Hitachi providing a trolley option for its 386-ton EH-5000 

dump truck [35]. 

 

Examples include the early DC-powered Kiruna K-1050E and K-635E [36] and the newer 

AC-powered Atlas Copco (formerly Kiruna/ABB) K-1050ED (now EMT-50) and K-

635ED (now EMT-35) [37]. The Hitachi EH-5000 and others of the same product range 

showcase this technology on a larger scale [35]. 

 

2.4 Hybrid 

 

The hybrid drivetrain offers energy saving opportunities mainly through allowing the 

engine to be sized to run efficiently at average power and “shave the peaks” with some 

other source of power, as well as kinetic energy recovery. Swing energy recuperation for 

excavators is currently the most common hybrid use case, which already yields positive 

economic results [38]. Several commercial excavators are already offering swing energy 

recovery through hybrid technology using capacitors or hydraulic accumulators [6], [7]. 

Hybrid technology for traction applications also shows promise of economic viability 

[39], [40]. Such hybrid drivetrains for traction applications have been researched and 

developed and even marketed for mining applications [41], [42], but any accounts of such 

vehicles in use or referenced in real-world operations could not be found. 

 

According to Paraszczak et al, the only completed example of a hybrid mining truck or 

LDH as of 2014 is a Canadian prototype LHD based on a LT-270 base model. This is a 

small series hybrid narrow mining LHD under development since 2005, which proved to 

have good performance characteristics yet below expected energy savings. [43], [18]. 

However, several other examples do exist: The EJC-90 based diesel-electric hybrid LHD 

equipped with zonal hydraulics that this work concerns also falls into this category with 

its intended diesel-electric hybrid drivetrain. Commercial examples are somewhat rare, 

including the Komatsu Joy-18 and Joy-22 hybrid LHD’s [42]. as well as the MES 

ALHA5140. The former is notably not a battery hybrid, instead using a “kinetic energy 

storage system” in conjunction with its diesel-electric drivetrain. This is a flywheel/motor 

system suitable for peak power shaving only. A detailed description of the latter’s 

drivetrain could not be found, but the specifications seem to indicate a diesel-electric 

battery hybrid with a 700V battery of unknown capacity for storage. [44]. Outside of 

mining there exist machines such as the Logset 12H hybrid forestry harvester [45] and 

the Komatsu HB205-1 and Caterpillar 336E H, which use capacitors and hydraulic 

accumulators respectively to store energy from the swing motion [46], [7]. 

 

There is clearly a recent and continuing surge in new unconventional mining vehicle 

designs. Due to increased stringency of emissions standards and progress of technology, 

the trend will most likely remain so for the foreseeable future. While the greatest energy 

savings potential is found in the drivetrain, there is significant room for improvement in 

the working hydraulics. DDH as discussed in this work are one method of bringing them 

up to the standard of emerging drivetrain technologies. 
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3 Hardware description 
 

This section aims to fully describe the hybridized EL-Zon mining loader to the extent as 

it appears in this work.  

 

A detailed description of the direct drive hydraulic machinery is provided, as well as all 

major supporting components, such as the sensors and power supplies used. 

Implementation of the developed CAN-network, its wiring, setup and testing were carried 

out during this thesis work, and so they are described in detail. 

 

When this work was started, most of the preliminary design work such as component 

selection and toolchain preparation was already completed by Aalto University in 

collaboration with Hybria. In addition, the donor vehicle’s conversion to a hybrid was 

planned out and started, involving various driveline and steering components, their 

batteries and electronics. Work on these systems was carried out in parallel to the direct 

driven hydraulics by other personnel, and for this reason will be described only cursorily. 

3.1 Setup Overview 

 

This is an overview of the systems installed on the mining loader that are relevant for this 

work. 

 

At the heart of this work are the mining loaders direct drive hydraulics. It consists of two 

self-contained pump/motor/tank units, each serving a single movement of the 

bucket/boom assembly. While there are some component sizing differences between the 

units driving lift and dump cylinders, they are fundamentally similar in construction and 

purpose. Figure 1 illustrates the physical appearance of the units. The motor is shown in 

orange, driving submerged pumps in the tank (dark gray) through a belt reduction drive. 

 

 

In a direct drive hydraulic system, the movement of pistons is controlled directly through 

pump output, without any valves. This arrangement has the possibility to reach 

exceptional efficiencies, as common sources of loss such as pressure drop in control 

valves do not exist. This also means that to produce cylinder movement in two directions, 

the pump/motors must be able to run in reverse and handle the different flow rates 

required by the piston- and rod sides of the cylinders. These design considerations are 

Figure 1 CAD model of a single DDH unit 
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elaborated upon in their own section. Figure 2 illustrates the structure of a single DDH 

unit, and the most important components used therein. 

 

 
Figure 2 Simplified schematic of the direct drive hydraulic system 

 

All of the pumps in a single DDH (Direct drive hydraulic) unit are powered by a single 

electric brushless DC motor by means of a toothed belt. The water-cooled motor is 

mounted on top of the DDH unit, and includes both a temperature- and angle sensor, 

which are both needed by and connected to the motor controller. 

 

For each of these two motors there is a SEVCON Gen4 controller. They are CAN-

connected devices with everything required for the smooth control of the DDH motors. 

In this application they are configured to receive rpm control instructions through the 

CAN bus, and control the motor with their inbuilt PI governor. Position control is 
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implemented with a PID controller running on the DSpace MicroAutoBox unit. Both 

controllers also communicate their own and the motor’s status, so information such as 

current consumption and power can be recorded. 

 

Parking brakes are an important safety feature on a large machine such as this. They are 

by default engaged and must be disengaged with hydraulic pressure. This is provided by 

a small DC motor-pump combo installed between the front wheels under the boom. No 

special control circuit is needed for the brake system, which is operated by means of a 

relay and a CAN-controlled proportional valve under control of the main program. 

 

The boom and bucket movement mechanics have load pins on the cylinder attachment 

points for measuring cylinder forces during operation. These are analog devices, each 

requiring an amplifier whose output is read by a CAN-connected input/output board. This 

board is also responsible for actuating the brake pump relay, since it’s coil current is far 

too large to drive directly. 

 

Additional safety hardware includes check valves on the DDH lift lines, which can be 

opened for normal operation. These valves, found on both the boom and bucket, make 

sure the load will not drop during power loss or other unwanted situations. They, like 

every other valve on the loader, are CAN controlled. 

User input is provided by a pair of joysticks, again connected to the CAN Bus, and a 

touchscreen on which the user interface runs. 

 

For additional data gathering the mining loader includes a suite of sensors. There are 

pressure sensors for the piston- and rod side of both DDH unit outputs and for the parking 

brakes. DDH units also include fluid level- and temperature monitors. Rotary wire 

encoders are installed for the boom and bucket movements to accurately determine their 

position. As with everything else, these sensors are connected to the CAN bus. 

 

There are four discrete CAN buses on the mining loader in order to accommodate devices 

of different data rates and protocols. Every input device and sensor is connected through 

these buses except the analog load pins. The buses are handled by a MicroAutoBoxII unit, 

which is an automotive prototyping system. It hosts all the control logic, user interface, 

and it also serves as a datalogger. The overall architecture of the mining loader can be 

thought of as a “star” topology network, with the MicroAutoBoxII at the center. 
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4 Software 
 

The control software is implemented as a Matlab model, which is compiled to C code that 

runs realtime on the MicroAutoBoxII controller, with a user interface built in dSPACE 

control desk version 5.6. 

 

This work included implementing four core areas of the control software: CAN interface 

definitions for the used devices, the device initialization, configuration and error handling 

logic, boom and bucket control loop with included automatic cycle support, as well as 

data gathering using the MicroAutoBoxII build-in flash. This enables the following 

functionality: 

 

• Initializing all devices on power up 

• Enter functional mode, either automatically or after user confirmation 

• Run the loader front end, either with operator input or automated cycle 

• Alert the user to problems and correct common ones 

• Stop system and close safety valves in case of major error 

 

In a separate work, the software was extended to include a facility for sensorless 

positioning of the boom and bucket. The extension provides an estimate of boom and 

bucket position based on motor controller feedback and a simulation model of the 

physical machine. This approach is discussed in [47]. 

 

The program can be described as a set of nested state machines, with the highest levels 

being a normal operating mode and two error levels for critical and non-critical errors. 

Through monitoring return data from sensors and actuators, the program logic can sense 

problems in hardware and act accordingly, either resolving the problem or entering the 

appropriate error mode. At all times, system status is shown to the user on the graphical 

user interface. As a state machine, the program is best explained through the high level 

states. 

 

 

 

4.1 Graphical user interface 

 

The purpose of this mining loader is twofold. It is intended to be not only a research 

platform for the new DDH technologies and large scale mobile hydraulics, but also a 

driveable demonstration. Since the operator might not be familiar with the inner workings 

of this research device, the mining loader is controlled through a graphical user interface 

displayed in figure 3. 

 

During normal operation, the program is able to initialize and handle every device on the 

mining loader automatically, and the user interface plays the same role as a dashboard on 

a normal car. Remaining battery charge, current consumption and any relevant status 

indicators are shown. While the interface does hold much more detail, it is there for 

research and debugging purposes, every necessary action for driving the mining loader is 

automated. 

 

At all times the current status of the mining loader is displayed in the top bar of the user 

interface. This bar includes the overall status of subsystems such as parking brakes or 

DDH drive status, and a breakdown of the most important parts of that system. While 

these are usually the individual components, such is not always the case. For example, 
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for brevity, the current status of the DDH drive’s battery is represented with a single 

indicator. In these cases, more detailed data is available elsewhere on the user interface, 

or either simply overlaid on that indicator. 

 

 

 

4.1.1 Usage instructions 

 

The user interface is created in Dspace’s “ControlDesk”, and a computer running version 

5.6 or higher of his program is required to access it. This computer must be connected to 

the MicroAutoBoxII through an Ethernet cable. Since ControlDesk will attempt to upload 

the selected program, the user interface must be selected beforehand. After opening the 

“jarrutesti1” project in ControlDesk, and applying power to the MicroAutoBoxII, 

pressing “Go online” will access the UI. 

 

If the screen spanning “System OK” indicator is green, everything is in order and the 

loader can be safely operated. Releasing parking brakes is the only action requiring user 

input, everything else is controlled through the bucket/boom and steering joysticks, 

whose actions are displayed on the joystick housing. Current brake status is shown on the 

status ribbon by the “Brake status” indicator, which is yellow when brakes are engaged, 

green when disengaged and red in case of a problem. The brakes are toggled by a large 

on-screen push button labeled “Brakes” 

 

If the “System OK” indicator is red, there is at least one problem significant enough to 

warrant checking. In nearly every case, more detailed information can be found on the 

status ribbon, detailing the problematic system and its status. Some common errors 

include: 

• DDH battery controller (96v) error state. Anything other than the ready state 

“4” causes loss of power for the DDH hydraulics. This is a common problem due 

to there being a noticeable voltage difference in the controller’s overall battery 

terminal voltage measurement and the sum of the individual cell’s reading, which 

causes the device to enter an error state. If clearing the error with the “Reset DTC” 

button does not work, power cycle the device. 

• Non-critical sensor error. This error does not prevent operation, but should be 

checked if data needs to be gathered. These sensors are electrically mounted in a 

long and branching chain, causing intermittent communication errors. The sensor 

encountering errors is shown on the status ribbon, and it’s cabling should be 

checked. In case of serious errors locking up the whole CAN bus no device can 

function, and all devices on the bus will be shown as encountering errors. In this 

Figure 3 Control dashboard in ControlDesk, the front end of the control system 
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case the bus in question can be recovered with the “Recover CAN x” button. (This 

is pretty much resolved with better wiring, if no longer a problem, remove this 

section) 

• Sevcon motor controller not in a proper state. These controllers require a 

specific startup sequence to be given to a “controlword” parameter to achieve 

operational status.  Current status of the controlword is shown on the UI 

(statusword), and should include the following bits: quickstop disable, enable 

voltage, switch on and enable operation. If this is not the case, the controller 

cannot work. Make sure that the devices have no outstanding errors indicated by 

a blinking green light on the controllers. Also check that they have entered 

“operational” CAN mode by sending this command with the “Force operational” 

button. Additional information can be found through the SEVCON DVT program, 

which requires its own CAN dongle in order to communicate directly with the 

controllers. 

 

It is good practice to keep track that the control joysticks are operating correctly. For this 

reason, their current readings are provided in the bottom left part of the UI. While there 

have been no problems with them, a malfunction of a certain type might not be detected 

by the mining loaders software if some values are still sent through the CANBus. In this 

case there is a great risk of uncontrolled and possibly dangerous operation. A large, red 

safety switch is provided in the cockpit for any such unforeseen situations, which when 

pressed will issue both a software shutdown command and lock the parking brakes. In 

non-critical cases the software shutdown command can be issued from the user interface 

with the “software safety switch” button. Both will cut power to the DDH hydraulics, 

lock their safety valves, apply brakes and ignore all other user input. This is the same 

functionality as in the critical error state. 

 

4.2 Normal Operation 

 

During normal operation, the control program interprets user control and acts 

accordingly. The logic is illustrated in figure 4. No user input is directly sent to actuators, 

both for safety and practical reasons. Since every device has its own formats and scaling 

for data, it is advantageous for any control system to operate on abstract data which is 

then translated for the devices as necessary. The program continuously monitors that the 

sensors and actuators are both available, sending data and having the correct settings.  If 

this is not the case, an error mode is entered depending on whether the device in question 

is classified as critical or non-critical. Critical devices include such as parking brake valve 

relays, charge controllers and position sensors, while non-critical devices are represented 

mainly by data-gathering pressure temperature and fluid level sensors. The input of these 

devices is either not required in anything safety critical or does not require immediate 

action. 
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4.3 Non-critical error mode 

 

Non-critical errors are those that do not pose immediate risk to either the loader or any 

personnel. They might still require corrective action or degrade the performance of the 

mining loader. Examples include faulty oil temperature sensors and incorrect information 

transmission rates which lead to reduced performance. In applicable cases a simple error 

resolver is engaged, which attempts to correct the error automatically, bringing the system 

out of this error mode and back to normal. In those cases where the resolver cannot help, 

the type of error is displayed in the user interface. 

 

4.4 Critical error mode 

 

A critical error is serious enough to warrant immediate action, locking down the whole 

machine in order to prevent or minimize any damage. This mode is triggered when any 

of the safety-critical devices is either not working or missing. Examples include the brake 

valve relay, without which brake control cannot be assured, DDH motor controllers that 

are critical in controlling the boom/bucket assembly and the safety locking valves for 

boom and bucket. In addition, all user input devices such as the steering and boom/bucket 

joystick count as critical devices. This mode is cleared when the problematic critical 

device is communicating correctly, or a special override is issued. This override is meant 

for testing the system when devices are either not connected or experiencing problems 

and should be used sparingly. 

Kuva 1 Figure 4 Block diagram of control system fault monitoring logic 
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4.5 Error handling 

 

It is possible for common problems to be recovered automatically, especially if such 

problems are expected due to some permanent feature of the system which cannot be 

altered. These cases include sensor data rate mismatch, non-initialized state, and a tripped 

BMS safety check. An example of a data rate mismatch is the data rate setting on pressure 

sensors, the value of which cannot be saved on the sensor itself. For this reason, every 

time the sensor is power cycled, it will revert to sending data at every 500 milliseconds, 

which is too slow for many measurements and especially for the brake system. This 

condition is automatically detected and corrected. The same logic applies in case the 

device is not sending any messages. In CANopen devices this condition occurs as a 

routine part of startup, the devices entering a pre-operational state and requiring explicit 

initialization. If the sensor cannot be brought out of operational mode, the error will be 

escalated to critical depending on the sensor concerned. A special case concerns the BMS, 

which occasionally mistakenly enters a protection mode due to a miscalibrated sensor. 

This state is automatically detected and cleared. Figure 5 illustrates the logic of the error 

resolver. 

 

 

 

  

Figure 5 Device troubleshooting and status reporting logic 
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5 Measurement 
In order to have consistent results, the mining loader is driven with repeatable, automatic 

cycles. This eliminates any inconsistency from manual input and allows for quick testing 

of different scenarios. As the control software gets direct feedback from the position of 

the cylinders and uses closed loop PID control, the effects of current battery voltage, oil 

temperature and such variables are minimized. 

 

When a cycle is running every relevant sensor and data source is continuously sampled 

and recorded to the flash memory of the MicroAutoBoxII. This data is exported to a 

Matlab-readable “.mat” format with Dspace’s “ControlDesk” software automatically 

when flash memory content is read. The end result is a set of data formatted as a Matlab 

struct, which includes the sensor data along with their time axis. This information is called 

a channel in this work. 

 

For longer cycles, the internal flash memory of the MicroAutoBoxII is not sufficient. In 

these cases, the measurement data is saved directly on the controller PC, connected via 

Ethernet. This is done with the ControlDesk record feature, and results in identical .mat 

files when compared with those saved to the MicroAutoBoxII flash memory. 

 

Two different cycles, simplified and original are used in this work. They have been 

selected to fulfill different requirements and are introduced in sections 5.1 and 5.2. 

 

 

5.1 Simplified cycle description 

 

Shown in figure 6 is the simplified working cycle, which aims to simulate a single down-

up movement of the boom and bucket assembly. As in a real working cycle, both the 

boom and bucket movements are used. This cycle does not perfectly correspond to a real 

working cycle, as that would require the bucket to repeatedly hit the floor and push against 

it, which is not acceptable here. 
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Figure 6 Boom and bucket position commands with the simplified cycle. The cycle is run at several 

speeds. 

 

It should be noted that the bucket position decreases towards the “up” position, whereas 

the boom position increases towards it. This is due to the distance measuring draw wire 

sensor being mounted to the cylinders with the bucket cylinder being reverse acting. The 

cycle starts with the boom lowered and the bucket in a neutral position. The bucket is 

pulled to its upper end stops, and the boom lifted to its topmost position. While keeping 

the boom raised, the bucket is dipped all the way down as if dumping rocks and then 

raised back up again. The boom is then lowered down. Finally, the bucket is lowered back 

to its neutral position. 

 

This cycle is run while controlling two variables: the speed at which the cycle is run, and 

the load mass placed on the bucket. Thus, the results show the DDH units at several 

different operating points where their ability to perform and efficiency is measured. 

 

There are four different velocities used: 1.5, 3, 5 and 8 cm/s, with the highest velocity 

being close to the machine’s maximum. The velocity of the whole cycle is scaled to these 

speeds, with the movements being identical but the runtime changing. 

 

Three different loads were selected for testing, 0 kg, 1040 kg and 2205 kg. The load 

comprises of two sets of weighted metal plates affixed to a frame, of which one or both 

are used to create the two different loads. 

 

5.2 Original test cycle description 

 

Mirroring one of the tests run with the original, diesel-hydraulic mining loader, the cycle 

as illustrated in figure 7 includes only boom movement. As the goal is efficiency 
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measurement, any sources or sinks of power outside that what is measured should be 

minimized. This precludes the realistic working cycles, as these include action such as 

driving and steering, all of which are powered by the diesel engine in the original mining 

loader. To compare the efficiency of the new DDH units to the original setup, a cycle that 

uses only the boom and bucket movements is needed, as power used by the drive and 

steering motors cannot otherwise be accounted for. Such a cycle exists in the 

measurement data, but only for boom movement. Therefore, this cycle is chosen as the 

only appropriate one for comparison between the conventional and DDH hydraulics.  

 

 
Figure 7 Boom position input 

 

During this cycle the bucket is held in its top resting position. The bucket is loaded with 

different weights, and the cycle itself incorporates several different velocities ranging 

from a very slow 2mm/s movement to a maximum of ~78mm/s close of the maximum 

attainable velocity. 
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6 Results 
 

This section demonstrates the results from testing with the two cycles defined in sections 

5.1 and 5.2. 

6.1 Simplified cycle 

 

The measurements from the simplified cycle are shown with the runs with different loads 

grouped together, with four sets of these results corresponding to the four different 

velocities. The goal of this investigation is to determine the system’s efficiency, with the 

results being shown with that goal in mind: First the system power input and output with 

the required data for their calculation and then the actual efficiency that results. 

 

6.1.1 Low speed 

 

The low speed cycle has a velocity of approx. 1.5 cm/s of cylinder extension. As the cycle 

is the same with all velocities, the low speed cycle takes the most time to complete. 

 

It is clearly visible from figure 8 that the current requirement increases in proportion to 

the load being lifted, with lifting currents during the lifting portion starting at 25s in the 

range of 50-130A depending on the load. Regeneration is visible during the lowering 

portion of the cycle starting after 110s, where the current is negative and being used to 

charge the battery instead. The current graph for the heaviest 2205 kg load is shaped 

slightly differently from the lighter loads, with the current ramping up before the actual 

lifting and not staying constant when the load is held in the up position. This is because 

the high load placed on the lifting mechanism causes the extension sensor to read a value 

slightly lower than the normal calibrated starting position, which in turn causes the I term 

of the PID controller to slowly start ramping up the torque. The inconsistent holding 

current does not have such a simple explanation. The most likely reasons are motor 

controller nonlinearity resulting from large temperature swings and PID issues, as the 

different loads and speeds were all run with the same PID parameters. The results with 

the highest load all have similar issues, as there is low or no extra power margin left with 

the 2205 kg load depending on the velocity. 

 

 
Figure 8 Boom motor controller current, low speed 
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Figure 9 shows the DDH battery voltage during the cycle. As expected, there is a drop in 

the voltage during the lifting phase corresponding to the current requirements at that time, 

with the larger currents required for heavier loads causing more noticeable drops. During 

the lowering phase regenerated energy from the load is fed back to the battery, causing a 

jump in voltage as the battery accepts charge.  

 

 
Figure 9 Battery voltage, low speed 

 

The power graph of figure 10 is not measured directly, but instead calculated from the 

current and voltage measurements. Since both the voltage and current measurement 

points are before the motor controller this data includes controller losses, which must be 

taken into account when determining efficiency. Both the lifting and lowering phases can 

be clearly seen in the data, with a peak lifting power of ~13kW for the highest load. The 

negative values seen correspond to energy regeneration, this is the power used to charge 

the battery. 

 

 
Figure 10 Motor power, low speed 

 

The force shown in figure 11 is measured directly with load pins mounted to each 

cylinder. The lifting motion has two parallel cylinders, therefore the combined load on 

the cylinders is the sum of measurements from both load pins. Usually when the boom is 

lowered most of the load is taken by the frame end stops, which is seen in the data as very 
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low force on the cylinders. With the load lifted the value remains quite stable with small 

variations due to geometry, and in the middle, movement of the bucket. In the case of the 

highest load the PID controller has started ramping up motor power early, most likely due 

to the increased load forcing the boom below the zero position setpoint either due to slop 

or bending in the mechanism itself. Since both the load and the velocity at which this load 

is moved is measured at the cylinders, there is no need to take into account the geometry 

of the machine when calculating the efficiency, as the calculation only depends on the 

force and velocity. 

 

 
Figure 11 Combined lifting force, low speed 

 

Velocity shown in figure 12 is measured with a distance sensor mounted on the lifting 

cylinders. It shows how the increased load slows acceleration, as the highest value is close 

to the machine’s maximum. The PID controller has difficulties starting load lowering 

smoothly, as both the motor controller and the mechanism itself conspire to produce a 

considerable stick-slip like effect which it does not explicitly take into account. The 

narrow spikes occurring when the load is stationary result of the position sensor crossing 

a quantization point due to shaking as the machine works and can be ignored. 

 

 
Figure 12 Boom cylinder velocity, low speed 
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Lifting power is calculated from lifting velocity and the load being lifted, with the results 

shown in figure 13. Due to the spikes in velocity when the lowering starts, there are 

corresponding spikes in the power as well. 

 

 
Figure 13 Mechanical lifting power, low speed 

 

6.1.2 Medium speed 

 

The measurements are the same for the medium speed, with a boom velocity of 3 cm/s. 

In figure 14 it can be seen that the current required to lift the load is larger as expected. 

 

 
Figure 14 Motor controller current, medium speed 

 

In figure 15 the battery voltage drops more under the increased current. It should be noted 

that the battery level itself varies due to the exact state of charge during the measurement, 

and it is the drop in the voltage under load, which is more interesting. 
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Figure 15 Battery voltage, medium speed 

 

Figure 16 shows the increased motor power to cope with the higher load. 

 

 
Figure 16 Motor power, medium speed 

 

The load on the cylinders is almost identical to the slow speed measurement as expected, 

but as seen in figure 17 the highest load level is starting to show jumps and unevenness, 

mainly caused by the PID jerks as it attempts to stabilize the high load. 
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Figure 17 Combined load, medium speed 

 

The velocity measurement in figure 18 shows increased overshoot at the beginning of the 

lowering phase, this results from the increased cycle speed. 

 

 
Figure 18 Boom cylinder velocity, medium speed 

 

Figure 19 shows the lifting power, increasing as expected with load. 

 

 
Figure 19 Mechanical lifting power, medium speed 



30 

 

 

 

6.1.3 High speed 

 

With the “high” speed cycle corresponding to a maximum cylinder velocity of 5 cm/s the 

electric drive is starting to reach its limits, with current saturating to a value of ~375A 

when lifting the heaviest load as seen in figure 20. Lower loads still have some headroom 

left at this speed. At the higher load levels a PID artifact is visible, the load does not 

completely reach the upper setpoint, but is held slightly under it until being jerked into 

position. This is visible in almost every figure with the highest load. 

 

 
Figure 20 Motor controller current, high speed 

 

Figure 21 illustrates the noticeably larger battery voltage drops during lifting. 

 

 
Figure 21 Battery voltage, high speed 

 

In figure 22 the yet higher motor power is shown. Motor power is limited to 35 kW, this 

limit was reached during the fast cycle with the heaviest load. At this speed, the power 

available for regeneration starts to suffer, especially with the lower loads due to friction 

and pumping losses taking up a larger portion of the lowering energy. 
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Figure 22 Motor power, high speed 

 

In figure 23 the load is nominal for the 0 kg and 1040 kg load, but there is significant 

jumpiness with the 2205 kg load. 

 

 
Figure 23 Combined force, high speed 

 

From figure 24 the result of reaching the motor power limit is visible, the highest load 

cannot be lifted fast enough to match the cycle. Both the 0 and 1040 kg load are still 

within the machine capabilities. 
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Figure 24 Boom cylinder velocity, high speed 

 

As expected, figure 25 shows the increased power required to lift the load. Since the 

maximum power is reached, lifting takes more time. 

 

 
Figure 25 Lifting power, high speed 

 

 

6.1.4 Highest speed 

 

The fastest cycle uses a reference cylinder movement velocity of 8 cm/s. This is high 

enough that it can only be cleanly accomplished without load, with both loads the 

machines power limit is reached and lifting speed is thus lower. In figure 26 this can be 

seen as saturation of the controller current and the corresponding increase in lifting time. 

The figure also shows how close to saturating the current is without external load at this 

speed, which was selected to showcase the fastest movement the machine is capable of. 
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Figure 26 Motor controller current, highest speed 

 

The battery voltage droops nearly 10 volts at this load and speed as shown in figure 27. 

This is because the capacity of the battery is fairly small in comparison to the currents 

delivered. The lithium titanate pack is sized mainly as a buffer, and it can easily support 

the load. 

 

 
Figure 27 Battery voltage, highest speed 

 

As with controller current, figure 28 shows motor power saturation in all but the zero load 

cases. In the 2205kg case, the achieved movement speed is slow enough to cause 

significant integrator windup in the PID controller, resulting in the lift cylinders pushing 

against the end stop for a while after the move is finished as seen in figure 28. 

 



34 

 

 
Figure 28 Motor power, highest speed 

 

Figure 29 shows there are some anomalies in the load pin measurements of the highest 

load case right before the lowering movement starts. This is assumed to be caused by the 

forced end stop contact. 

 

 
Figure 29 Combined load, highest speed 

 

The lifting velocities in figure 30 clearly show the effect of increased load, the set speed 

is only reached without any load.  
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Figure 30 Cylinder velocity, highest speed 

 

In figure 31 the lifting power does not change much due to the power limitation, with 

time to complete the movement being the main difference. 

 

 
Figure 31 Lifting power, highest speed 

 

6.2 Original test cycle 

 

Results from this measurement are split in two categories: work done by boom movement, 

and power input to the system. Data from the conventional load sensing setup is presented 

first in 6.2.1, followed by the DDH setup in 6.2.2. 

 

6.2.1 Load sensing setup 

 

To calculate efficiency, system output and input power is needed. The output can be 

calculated through the actual mechanical work performed by the lifting cylinders. Figure 

32 illustrates boom movement, which is exactly as shown in the cycle description as this 

is the reference signal. 
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Figure 32 Boom movement during the cycle 

 

It can be seen from figure 33 that the only bucket movement is slight leak-induced creep, 

the bucket is not used during this cycle. 

  

 
Figure 33 Bucket movement during the cycle. This movement is due to gravity induced creep 

 

The large load spikes visible in figures 34 and 35 result from the cylinders being driven 

against their end stops. The actual lifting and lowering happens during the mildly sloping 

parts. Due to how the load pins are set up, the load acting to compress the cylinders is 

shown as negative. 
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Figure 34 Load acting on the right side cylinder load pin 

 

 

  
Figure 35 Left side, load on both cylinders is measured independently 

 

The spikes are also visible on the left side cylinder load, but it can be seen that the ones 

corresponding to the top limit are inverted when compared to the right side load. This is 

because there is a very slight difference in the cylinder stroke lengths, causing the right 

side cylinder to reach the end of its travel first. At that point, its force acts only against its 

own end stop, causing no response to the load pin. However, since the left cylinder has 

not reached the end of its travel, it can still exert force on the cylinder’s common mounting 

point. This is shown as an increase in the load reported by its load pin, and also as a 

corresponding but opposite load change on the right cylinder load pin, as this cylinder, 

already at the end of its travel, is being pulled by the left side cylinder. Adding the cylinder 

loads together will largely remove these spikes as they are equal and opposite of each 

other, as shown in figure 36. 
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Figure 36 Combined load of the lifting cylinders 

 

Note the absence of spikes caused by driving the mechanism against its endpoints. When 

the mechanism is sitting in the “down” position on the mining loader, the cylinders are 

unloaded and do not support the load. This can be also seen at the points where load is 

near zero. 

 

Movement speed is derived from position measurements. Due to noise, the speed profile 

shown in figure 37 is a result of deriving a fitted curve instead of the data itself, the 

procedure is detailed in the analysis section. 

 

 
Figure 37 Velocity of lifting cylinders 

 

Combined with cylinder load, this information can be used to calculate work performed 

by the lifting movement as presented in figure 38. When the load is lowered, work is 

being done into the system as shown in the negative power. However, since this power is 

not being regenerated in any way, it is wasted with the conventional load sensing setup. 

Therefore, this power is disregarded as shown in the figure. 
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Figure 38 Mechanical output power, with wasted power from lowering shown in blue 

 

Input power is provided by the ICE and can be found from the measured torque and RPM. 

The raw torque measurement in percentage of maximum is shown in figure 39. 

 

 
Figure 39 Measured torque of the ICE, in percent of its maximum 

 

Since the engine torque measurement is recorded as a percentage value of its rated 

maximum, it is useful convert this into the actual values in Newton-meters. As the rated 

torque of the engine is listed as 470 Nm, the results are as shown in figure 40. In the load 

sensing setup, the engine torque responds to power demand, this can be seen as torque 

increases during the lifting phases of the cycle. 
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Figure 40 Engine torque in Nm 

 

During work, the ICE attempts to maintain a constant RPM. Engine speed is controlled 

to around 2200 rpm, with sudden spikes induced by load changes visible as shown in 

figure 41. The governor introduces overshoot when compensating for the sudden drop in 

RPM caused by load. 

 

 
Figure 41 ICE RPM during the cycle 

 

Figure 42 shows that due to the nearly constant RPM power follows the torque closely. 

During the transient spikes power is taken from the rotational inertia of the flywheel, 

visible as spikes in power. This behavior is good for a fast response, since the ICE cannot 

increase its power output nearly as fast as the valve-controlled hydraulics can demand. 

As the ICE maintains constant RPM during the cycle, energy for the quick accelerations 

is available from the rotational mass of the flywheel and the engine itself. This is 

observable in the RPM graph as a quick drop when a movement is started. 
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Figure 42 Engine power during cycle 

 

 

6.2.2 DDH setup 

 

Measurements differ slightly for the DDH setup, with current and voltage having the key 

role in the input power. The output power is found in the same way as the conventional 

setup, from the speed and load of the movement. With the DDH setup, the original 

measurement cycle was used as an input, which the PID controller tries to approximate 

to the best of its ability. The actual result is shown in the figure 43. Overshoot can be seen 

with the faster velocities. In addition, some speed error during the first, slow start due to 

stick-slip effect overcoming the controller’s P term contribution, requiring the integrator 

to spool up to start the motion. Nevertheless, the cycle can be seen to be quite faithful to 

the original. 

 

 
Figure 43 Realized boom position during the cycle 

 

Velocity of the movement is found in the same way as with the load sensing setup, 

through fitting a line to the noisy position derivation. The result is shown in figure 44. 
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Figure 44 Velocity of the lifting cylinders of the DDH setup 

 

The measured cylinder loads are shown in figures 45 and 46. It can be seen that the 

mechanism does not quite reach the bottom, since the cylinders are supporting the weight 

at all times. This was done in order to not confuse the PID controller, and since only the 

lifting and lowering actions are factored into the calculations, the comparison stands. 

 

 
Figure 45 Load acting on the right side cylinder load pin 
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Figure 46 Load acting on the left side cylinder load pin 

 

The total load resulting from adding both cylinder loads together is shown in figure 47. 

 

 
Figure 47 Total load of the lifting movement 

 

The input power depends on the current and voltage, which can be seen in figures 48 and 

49. Highest transient current of 400A was measured at 270 seconds, this peak is outside 

the range of figure 48 to better visualize normal operation. 
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Figure 48 Motor controller current, scale clipped to 250A 

 

The inaccuracy of the voltage sensor can be seen in figure 49, this issue is partly fixed in 

the newer simplified cycle measurements. 

 

 
Figure 49 Battery voltage as seen by the lifting movement SEVCON controller 

 

Figure 50 shows both the system input (motor) power, as well as the achieved physical 

output. 
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Figure 50 Lifting movement input and output power. 
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7 Analysis 
 

This section demonstrates the equations used in calculations. 

Efficiency is defined as the ratio of output power to input power. 

 

𝜂 = (
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
) · 100                (1) 

 

Here, the output power is work done by the boom and bucket movements, and input power 

is the power either produced by the ICE or taken from the battery. 

 

Output power calculations are the same for both the new DDH setup, and the old ICE-

powered one. Power can be expressed as a product of velocity and force. 

  

𝑃 = 𝐹 ∙ 𝑣             (2) 

 

Force is directly available from load pins installed on the cylinders. Newer data gathered 

with the simplified cycle includes direct velocity measurement, a feature of the position 

sensor used. For older data, it can be derived from the raw position measurement: 

 

𝑣(𝑡) =
𝑑𝑠

𝑑𝑡
,               (3) 

 

where s is the position. 

 

Engine power can be calculated from the product of torque T in Nm and angular speed 𝜔 

in rad/s. 

 

𝑃 = 𝜏 ∙ 𝜔            (4) 

 

It is advantageous to present the energy expended and regenerated during the cycle 

directly as joules to better visualize the situation. From the above data, energy can be 

found with 

𝐸 = 𝑃 · 𝑡          (5) 

 

 

7.1 Simplified cycle 

 

Efficiency is calculated with (1) from the input and output power. In figure 51 both the 

lifting and lowering efficiencies are shown for all three tested loads. The lowering 

efficiency is calculated in the same manner, except with the lowering power as input and 

power accepted by the battery as output. The aforementioned velocity measurement 

quantization noise is visible here in the stationary parts of the cycle and can be ignored. 

 

Figure 51 shows that for the low speed case, the efficiency starts at around 50% for the 

no load case, the highest value of the measurements for this speed. Regeneration 

efficiency likewise peaks with no load, reaching 40%. At this speed, increased load causes 

a loss in efficiency for both lifting and regeneration (lowering), with higher loads reaching 

progressively lower numbers. At the maximum 2205 kg load, lifting efficiency has 

dropped to roughly 40% and regeneration to 30-35%. Although they trend similarly, 

regeneration efficiency behaves differently compared to lifting in that the gap between 

the no load and 1040 load scenarios is much smaller.  
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Such a slow speed is not optimal for efficiency. The efficiency curve of the average 

BLDC motor indicates lower efficiencies at very low RPM, and since the load is at all 

times borne by the motor, there is a loss of efficiency simply due to the long time spent 

holding the load against gravity. 

 

 
Figure 51 Lifting and lowering efficiency, low speed 

 

Figure 52 shows the net energy taken from the batteries during the cycle. Regeneration 

lowers the total due to recovering the energy. Completing the cycle at this velocity 

requires 170 kJ, 82 kJ and 55 kJ respectively for the 2205kg, 1040kg and 0kg load cases. 

 

 
Figure 52 Energy used for lifting and lowering, low speed 

 

It can be seen from figure 53 that at medium velocity, higher lifting efficiencies of 53% 

are achieved. Furthermore, the addition of load has a minimal impact in this case, with 

only the heaviest 2205 load suffering a very slight 1-2% loss. The situation with 

regeneration efficiency is different, the point of peak efficiency has shifted to higher 

loads. A continuous value of 45% is achieved with the 1040 kg load, followed by 40% 

with 2205kg and 35% with 0 kg. This is because resistance to movement from friction 

and hydraulic losses increases with speed, and the force caused by these losses on the 

lowering boom cylinder is subtracted from the force available for spinning the motor 

when regenerating. The peak efficiency point to move to higher and higher loads as the 

speed increases. 
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Figure 53 Efficiency, medium speed 

 

Figure 54 illustrates the increase of efficiency, energy required for the cycle at highest 

load has lowered from 170 kJ to 141kJ. A decrease of 20% in energy requirements was 

achieved due to slightly higher lifting efficiency and regeneration efficiency. The result 

is a good illustration on how seemingly small fractional increases in efficiency can result 

in noticeable energy cost decreases. The total energy for the 1040 kg case has likewise 

reduced from 82 to 70 kJ, with only the 0 kg load staying the same at 55 kJ. The 0 kg case 

suffers from less regeneration, which balances out the increased lifting efficiency at this 

velocity. It is clear that in a machine capable of it, regeneration efficiency plays an 

important role in the net energy usage. Figure 54 also shows the result of the boom not 

reaching target position right after the first lift, and the correction later at 40s to reach it. 

Beyond start-stop transients, this does not affect the energy balance. 

 

 
 
Figure 54 Energy used for lifting and lowering, medium speed 

 

With the high velocity case illustrated in figure 55, lifting efficiency again remains a 

nearly constant 48%, slightly lower than with the medium velocity case. The lifting time 

is increased at the highest load due to that case reaching the limits of machine capability, 

resulting in a lower actual lifting velocity. In a real world working situation, this would 
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be the likely operating point of the mining loader. As observed in previous results, the 

peak regeneration efficiency point has shifted further towards higher loads, with the 2205 

kg case showing the highest efficiency of ~50%. At lower loads the efficiency is much 

lower, under 40% for 1040kg and under 20% with 0 kg. Higher lowering velocities simply 

require more load on the cylinder to overcome losses and generate useful power. It should 

be noted that the highest regeneration efficiency measured was achieved with this velocity 

and the highest measured load of 2205 kg. 

 

 

 
Figure 55 Efficiency, high speed 

 

As seen from figure 56, cycle energy for the 2205 kg load has remained virtually 

unchanged at 141 kJ. The slight loss of lifting efficiency is compensated by the gain in 

regeneration efficiency. With the 1040 kg and 0 kg loads, energy requirements have risen 

to 78 kJ and 66 kJ respectively. It can be said that at the 2205 kg load, both the 3 cm/s 

and 5 cm/s velocities lie within the machines optimal operating point, due to minimal 

differences in efficiency around that area. In contrast, the lower loads are seeing a loss in 

efficiency at this point when compared to the 3 cm/s velocity. This is good behavior with 

regards to the mining loader case, as they are often operated at maximum achievable 

lifting velocities. 

 
Figure 56 Energy used for lifting and lowering, high speed 

 



50 

 

There are noticeable differences to previous cases in the highest 8 cm/s speed illustrated 

in figure 57. Lifting efficiency is noticeably lower at 40% for the 0 kg load case, caused 

by increased losses at this velocity. Lifting velocity for both the 2205 and 1040 kg loads 

has saturated as maximum machine power is reached, making the 2205 kg measurement 

redundant in everything except duration. In both of these saturated cases lifting efficiency 

is maintained at or slightly below 50%, with the lower load simply reaching a higher 

lifting velocity. Regeneration at this speed is limited, with the 0 kg load achieving 

effectively no regeneration. 1040 kg load regeneration has dropped to roughly 20%. 

Curiously, the 2205 kg load shows poor regeneration as well. This is an unexpected result, 

as there should be more energy available for regeneration after subtracting movement-

related losses. 

 

 
Figure 57 Efficiency, highest speed 

 

As seen in figure 58, lack of regeneration combined with lower lifting efficiency raises 

the energy costs for the 2205 kg load to 200 kJ. At 1040 kg and 0 kg the energy costs are 

similar at ~82-85 kJ. The lack of regeneration is clearly visible. 

 
Figure 58 Energy used for lifting and lowering, highest speed 

 

The results suggest an optimal operating point between 3 and 5 cm/s when loaded. The 

DDH setup maintains a good efficiency up to maximum achievable speed with load, with 

fast unloaded movements and slow movements in general resulting in somewhat lower 

efficiencies. Even then, the difference is low, around 5%. Regeneration has a lower 
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optimal operating point, which is strongly dependent on the load. Higher loads require 

higher speeds to achieve good regeneration, with significant losses at high speed and low 

load as well as low speed, high load ones. This trend does have its limits, at maximum 

load and speed regeneration begins to suffer again.  

 

7.2 Original test cycle 

 

Results from this measurement are split in two categories: work done by boom movement, 

and power input to the system. Data from the conventional load sensing setup is presented 

first in 7.2.1, followed by the DDH setup in 7.2.2.  

 

7.2.1 Load sensing setup 

 

It is required to derive speed from the movement’s position in order to find its power. 

Simple derivation is not enough however, as the measurement is too noisy. By using a 

Chebyshev II 8th order lowpass filter with a stopband edge frequency of 7 rad/s and 

stopband attenuation of 40 dB (Matlab implementation), it is possible to arrive at a much 

better result as illustrated in figure 59. 

 

 
Figure 59 Derivation of boom velocity from its position, filtered and unfiltered 

 

This approach has several drawbacks, though. The filtering introduces artifacts such as 

delays and overshoot, which are not present in the data. As the intention is to calculate 

power with respect to time, the delays especially are harmful. By shifting quick changes 

in speed away from the corresponding engine power spike, the result gets distorted. While 

these issues could be mitigated by applying the exact same filter to the power data, an 

easier and more accurate solution is available. 

 

Since the test cycle only includes constant speed movements with very quick 

accelerations and decelerations, it is possible to fit a curve on the measurement consisting 

only of straight lines. Since the curve is completely smooth, deriving it causes no 

problems. Such a curve was constructed in Matlab Simulink’s signal generator, and the 

error between this approximation and the real measurement is as shown in in figure 60. 

The actual measured cycle corresponds well to the fitted curve, reaching a maximum error 

of 10 mm only briefly. 
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Figure 60 Position difference between actual measurement values and the fitted curve 

 

It can be seen from figure 61 that the derived velocity is far smoother. 

 

 

 
Figure 61 Velocity as derived from the fitted position curve 

 

This simplification assumes instant accelerations and constant velocity during movement, 

and by looking closer at the position graph, it seems to be a reasonable assumption. Figure 

62 shows a detail from the position measurement. 

 

 
Figure 62 Detail from the boom cylinder position graph, showing a typical quick acceleration and 

stable velocity from Figure 43 
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Efficiency during the cycle is simply the output power divided by input power calculated 

with (1) and illustrated in figure 63. 

 

 
Figure 63 Efficiency during cycle 

 

A clear trend is that the efficiency of the conventional cycle correlates positively with the 

cycle’s speed. This is a result from the load sensing hydraulic system, which is not able 

to ramp down to very low power levels. Since the engine is always running, and wasting 

power, the percentage of power going to the actual movement improves with higher 

power levels. 
 

During this cycle, the highest efficiency recorded was ~20% from the engine to lifting 

power. Running the cycle with higher load, maximum recorded efficiency reached ~40% 

with the fastest movement.  

 

The wasted power here comes from how the load sensing system is set up. The variable 

displacement pump appears to have some minimum displacement, since even at zero 

actual load, ~35 kW engine power is required to keep the pump and accessories running. 

Since the engine maintains full speed during work, power loss is not reduced by simply 

running the pump slower. 

 

With the DDH setup, much higher efficiencies were reached. After the slow initial lift, 

the efficiency reaches approximately 53%, and stays roughly constant with increasing 

speed. This is consistent with an electric motor with a fairly constant efficiency across 

much of its operating range mounted in a direct drive configuration. At the very low speed 

of 2 mm/sec during the initial lift, hydraulic leakage along with reduced controller and 

motor performance impact the efficiency negatively, lowering it to around 21% 

 

The measurements from the DDH system are quite noisy, however. This is attributable to 

the modified PID-control used, which is tuned very aggressively to closely approximate  

the original testing cycle, becoming prone to micro-oscillations. The controller must 

contend with delays mainly caused by the motor controller’s response time, starting 

performance and stick-slip movement, which lower its performance. Along with the noisy 

voltage sensor, this is the main source of error in these measurements. 

 

7.2.2 DDH setup 
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Calculating efficiency with (1) yields Fig. 64. With the DDH setup, much higher 

efficiencies were reached. After the slow initial lift, the efficiency reaches approximately 

53%, and stays roughly constant with increasing speed. This is consistent with an electric 

motor with a constant efficiency across much of its operating range mounted in a direct 

drive configuration. At the very low speed of 0.002m/sec during the initial lift, hydraulic 

leakage along with reduced controller and motor performance impact the efficiency 

negatively, lowering it to around 21% 

 

 
Figure 64 Boom lifting efficiency,   DDH setup 

 

Due to aforementioned reasons, the starting velocity of the slowest 0.002 m/s movement 

is somewhat higher than the reference. This shows up as a noticeably higher efficiency of 

37% in the beginning, dropping to 21% after the movement slows down. The DDH 

system is shown to have velocity dependent efficiency in this cycle, but only at the 

extremely low end of the speed range. 

 

The following section presents an estimate for the economic feasibility of putting the 

described system into practical use. 
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8 Economic considerations 
 

For any new technology to be commercially adopted, there must be a financial incentive 

to do so whether through direct savings or savings through lower long term operational 

costs. Currently, the specialized electrical equipment required by a hybrid working 

machine are more expensive than their analogues in conventional machines. While some 

of these components, especially batteries driven by increasing demand and maturing 

technology [48] are rapidly becoming more economical, a hybrid machine does come 

with higher upfront costs than a conventional one. Therefore, the financial appeal of such 

a machine depends on its ability to pay back the difference of purchase price through 

savings from operational costs. 

 

8.1 Time to return of investment 

 

A return of investment (ROI) analysis takes into account the difference of purchase price 

and through estimating operating cost savings, gives an indication of when the product 

has paid for itself and starts generating profit when compared to the conventional option. 

A lower ROI time is clearly better, as it allows the company to reap benefits from its 

investment sooner, and often significantly affects whether the investment is made in the 

first place. In this case, a hybrid mining loader with DDH is compared against its 

conventional counterpart with the intention of estimating how long it takes for the 

technology to pay for itself. 

 

 

8.2 Sources of uncertainty 

 

This analysis is an estimate with two main sources of uncertainty. Firstly, several values 

used in the calculations are estimates or not directly comparable. As a one-off prototype, 

the DDH mining loader does not benefit from economies from scale as serially produced 

machines do. In addition, it is not optimized for cost savings. Conversely, the price of 

those parts made in house at the university will be lower than a comparable industrial 

ones, as profit margins and work cost are not included. 

 

Secondly, the exact lifetime and maintenance costs of these machines are not commonly 

available, as mining companies have not published this internal data. There exist 

estimated breakdowns for usage costs for mining equipment [49] which will be used for 

these calculations. For fuel consumption there exist measurements from the particular 

loader this work concerns before its hybrid conversion, but as the conversion has not 

progressed far enough to complete full working cycles, estimates will draw from 

simulations of this hybrid machine [50] and other similar hybrid installations [51]. 

 

8.3 Calculation method 

 

The two main components of a ROI calculation are the initial cost difference at purchase 

time, and monthly savings during operation. Since there currently exists in production a 

very close analogue of the EJC90 used here, the LH204, its purchase price will be the 

comparison point.  The difference of that when compared to the hybrid loader will be 

obtained by removing the cost of the conventional hydraulic and automotive components 

replaced from the total cost of the equipment it was replaced by. As proven by this 

conversion, a viable hybrid mining loader can be built on a standard frame by only 
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changing the relevant components. While not optimal with regards to performance, this 

construction allows easy cost and performance comparisons with the conventional 

version. 

 

The basic form of the equation calculating time to full return of investment is 

 

 

𝑡𝑅𝑂𝐼 =
𝐶ℎ𝑦𝑏−𝐶𝑐𝑜𝑛𝑣

𝑅𝑐𝑜𝑛𝑣−𝑅ℎ𝑦𝑏
    (6) 

 

Where 

𝑡𝑅𝑂𝐼 = Time to return of investment (payback time) in months 

𝐶ℎ𝑦𝑏 = Capital costs of the hybrid mining loader 

𝐶𝑐𝑜𝑛𝑣 = Capital costs of the conventional option 

𝑅𝑐𝑜𝑛𝑣 = Monthly running costs of the conventional loader 

𝑅ℎ𝑦𝑏 = Monthly running costs of the hybrid loader 

 

8.4 Capital costs of conventional loader 

 

This hybrid mining loader prototype was converted from an EJC90 loader. This model is 

no longer available, meaning there is no current price for it. However, an extremely close 

analogue in every way is offered by Sandvik, the LH204, which is thus used as the 

baseline. These loaders have a tramming capacity of 4082 and 4000 kg respectively, and 

very similar weights and dimensions. 

 

Based on weight, the purchase price (𝐶𝑐𝑜𝑛𝑣) of a new LH204 is 350 000€. 

8.5 Capital costs of hybrid loader 

 

To estimate the capital costs of a hybrid mining loader, any additional equipment used 

for hybridization is added to the list price of the conventional one, and removed 

conventional equipment removed from it. For components used in hybridizing the EJC 

90 loader, the cost breakdown is shown in table 1. 

 
Table 1 Additional components required for the DDH frontend wrt the original setup 

Hybrid case Component Price Quantity 
DDH motor Motenergy me1304 768 € 2 
DDH controller SEVCON Gen4 Size 6 1 173 € 2 
Boom pumps PGL100-008 x2 (set) 1 813 € 1 
  PGL100-013+001x1 (set) 1 077 € 1 
Bucket pumps PGL100-016 x2 (set) 1 078,20 € 1 

 PGL100-022 x2 (single) 661,70 € 2 
Drive motors 1PV5135 1 104 € 2 
Inverter HES880 6 000 € 1 
Battery Week 29 Week 29 5 000 € 1 
Battery 96v (3x 24v 60ah) ALTAIRNANO 24V 60Ah 3 000 € 3 
Battery management+ 60ah 
96v BMS+CCU + 24v60Ah cell 5 000 € 1 
Slew drive IMO WD-H 0300 3 000 € 1 
Slew drive electrics - 4 000 € 1 
Volksvagen genset TDI 2.0 - 475 NE 5 000 € 1 
Generator Siemens 2000 1 
  Total 50 382 €  
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The conventional components that are no longer needed are listed in table 2. 

 
Table 2 Components that are no longer needed by the DDH frontend (estimate) 

Conventional case  Price 

Frontend pump  400,00 € 

Drive pump  400,00 € 

Centerjoint torque motor  2 000,00 € 

Deutz 2012 engine  3 000,00 € 

Frontend lift motor  400,00 € 

Frontend dump motor  400,00 € 

  Total 6 600,00 € 

 

The net cost for the conversion is therefore 43 782€ This brings the total cost of the hybrid 

mining loader, 𝐶ℎ𝑦𝑏, closer to 400k€ That difference of price between the conventional 

and hybrid loader is what affects investment recouping time and is used in the following 

calculations. 

 

8.6 Working cycle used for running cost calculations 

 

The stock configuration of the EJC90 loader was tested in 2009 at an experimental mine 

in Tampere [52]. This data forms a baseline of performance and efficiency against which 

the proposed hybrid mining loader is compared. Figure 65 presents a two-dimensional 

simplification of the path of the loader within the mine, including grade and distance 

information. 

 

 
Figure 65 Grades and distances of the working cycle 

 

Figures 66 and 67 show the path from above, with color coding corresponding to the 

projection of figure 65. This cycle is the “long route” for testing the mining loader 

underground in [52] and measures a total of 378 m one way. 

 

The terrain is not as uniform as figure 65 might lead to believe, as is often the case in the 

real world. The HIL simulation model used in [52] uses motor load and engine output, so 

this should not adversely affect the simulation. 
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Figure 66 Upper level of research mine, path of the loader colored 
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Figure 67 Lower level of the research mine, path of the loader colored 

 

 

 

8.7 Monthly running costs of conventional loader 

 

The running costs of a mining loader consist of more than fuel costs. Tires, lube and 

replacement parts combined with overhaul labor contribute a significant portion of total 

running costs. These costs are estimated using data from infomine.com, scaled to the size 

and weight to the EJC 90 as well as the working cycle it was used with. This data, shown 

in table 3, will not be a perfect fit but does provide a reasonable approximation. 

 

 

 

 

 

 

 



60 

 

Table 3 Monthly running cost estimate for a 109 000-pound LHD, scaled from Infomine data 

2014 $ to € exchange 
rate 1,33    
Running cost, generic 
109k lbs ldr 

Raw hourly running 
costs In Euro Wt scaled Monthly 

Overhaul parts 4,83 3,63 € 1,02 € 341,70 € 

Overhaul labour 3,9 2,93 € 0,82 € 275,91 € 

Maintenance parts 8,97 6,74 € 1,89 € 634,59 € 

Maintenance labour 7,25 5,45 € 1,53 € 512,91 € 

Diesel fuel 48,12 36,18 € 10,13 € 3 404,30 € 

Lube 7,18 5,40 € 1,51 € 507,96 € 

Tires 28,02 21,07 € 5,90 € 1 982,31 € 

Wear parts 0,74 0,56 € 0,16 € 52,35 € 

Total 109,01 81,96 € 22,95 € 7 712,03 € 

 

8.8 Monthly running costs of hybrid loader 

 

Although a hybrid mining loader might facilitate extra methods for running cost 

reductions in other areas, such as anti-skid controls for reducing tire wear or reduced 

maintenance needs due to less moving and wearing parts, these are outside the scope of 

this thesis. According to [52], the simulated hybrid loader uses roughly 50% of the fuel 

the conventional loader does when performing the working cycle used in testing. The 

modified running costs based on reduced fuel consumption are found in table 4. 

 
Table 4 Montlhy running costs for a hybrid LHD, based on fuel consumption only 

Running cost, hybrid 
109k lbs ldr Raw hourly running costs In Euro Wt scaled Monthly 
Overhaul parts 4,83 3,63 € 1,02 € 341,70 € 
Overhaul labour 3,9 2,93 € 0,82 € 275,91 € 
Maintenance parts 8,97 6,74 € 1,89 € 634,59 € 
Maintenance labour 7,25 5,45 € 1,53 € 512,91 € 
Diesel fuel 24,06 18,09 € 5,07 € 1 702,15 € 
Lube 7,18 5,40 € 1,51 € 507,96 € 
Tires 28,02 21,07 € 5,90 € 1 982,31 € 
Wear parts 0,74 0,56 € 0,16 € 52,35 € 
Total 84,95 63,87 € 17,89 € 6 009,88 € 

 

According to this estimate, monthly running costs decrease 1702€. Calculated with (6), 

this results in a ROI time of ~25.72 months, approximately 2.1 years. The useful life of a 

mining loader varies, with reported values ranging from 12000 to 20000 hours depending 

on maintenance, equipment quality and operator ability. The source includes comments 

on these being traditional values that are expected to be exceeded with modern machinery 

with advanced diagnostics. Depending on the way the loader is used, yearly utilization 

can range from 3500 to 6000 hours, giving a lifetime range from 2 to 5.7 years [12]. It 

should be noted that the Infomine source [49] does not specify loader utilization, therefore 

a direct comparison is impossible. Nevertheless, most of the cost accrues from sources 

linked to running hours and not calendar life (such as fuel, tires and maintenance), thus 

giving roughly equivalent benefits regardless of how hard the LHD is run. Due to the 

difficulty of finding first-hand information on vehicle running costs and lifetimes the 

range of best and worst-case scenarios suggests the presented hybrid LHD is 

economically viable, but not in all use cases. 
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9 Discussion 
 

The presented DDH setup was able to achieve a higher efficiency than the conventional 

load sensing setup with all measured loads and velocities. Notably, the lifting efficiency 

of the DDH setup was nearly constant across all loads and all but the very slowest speeds, 

contrasting with the strongly load-dependent efficiency of the conventional setup. 

Highlights include a twentyfold efficiency difference of 1% vs 21% in favor of DDH at 

the lowest measured speed, with the gap closing to ~20% vs 53% with higher loads and 

velocities. This is disregarding the potential for energy regeneration during lowering, 

capable of recovering ~20-50% of the potential energy. Regeneration is an important 

benefit of DDH technology, however it was intentionally left outside the raw lifting 

efficiency comparisons due to it being not representative of the work the DDH units do 

as installed on a mining loader due to limited operation of a fully loaded bucket. 

Nevertheless, it is an advantage completely absent in the load sensing system it replaces 

and can be a highly useful addition to any number of different DDH applications. For 

example, the many emerging swing energy recovery systems for excavators could also be 

implemented with DDH. The strongest argument for DDH this research provides is that 

it comfortably exceeded the conventional system in efficiency with all operating regimes, 

even with conservative estimates without regeneration. Any system which achieves this 

without compromise in power, working ability or usability shows considerable promise. 

The value proposition of DDH as proposed in this work therefore hinges on the economic 

side, weighing these advantages against the increased equipment up-front cost. 

 

The mining loader test case proved to be a rather good fit for DDH technology. All of the 

efficiency improvements were achieved without negatively affecting lifting capacity or 

speed. Operator feel in manual mode was good, and the machine was capable of sub-

centimeter bucket positioning accuracy, more than enough for the intended work. It is the 

author’s belief that this prototype, when completed, will prove up to the task of real world 

work. The biggest drawback, or rather an unused opportunity, is the regeneration ability. 

The electric drive used in DDH is intrinsically capable of regeneration without any 

additional components or software. The same technology could provide greater benefits 

applied to a system that lends itself better to regeneration, such as the traction drive of the 

loader. In that case, regeneration could be used to recoup energy on the nearly ubiquitous 

downhill section of the working cycle. 

 

There are issues requiring future attention with the prototype DDH units, which are 

detailed here. The most significant of these is the disposal of motor waste heat. Due to 

the high efficiency, the DDH units do not generate as much heat as a conventional 

hydraulic system of same capacity, and thus were able to operate some time without any 

active cooling. For extended work, the units were provisioned with water cooling by 

means of an integrated cooling jacket in the motors. This proved to be thermally weakly 

coupled to the motor’s coils, allowing only for a slight reduction of operating temperature 

even with a strong flow of cool water from an external source. For heavy-duty work, a 

motor with better thermal characteristics will be required. A smaller issue was the control 

performance of the SEVCON motor controller. The simple PID controller provided is not 

up to the task of handling the stick-slip effect, highly variable load and non-linear 

response caused by the boom and bucket geometry. Implementing more advanced control 

outside the SEVCON is tricky due to the non-real-time nature of CAN communications. 

While this will be of no concern in the standard mining loader application with open-loop 

human operated controls, any automation application should take this in account. 

  

A notable limitation of this research was the comparative lack of data on the conventional 

load sensing system originally installed in the loader. While a good set of thorough 
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measurements was available, these could not be replicated or adapted to this particular 

research due to the machine in its original configuration no longer existing. The greatest 

drawback was a lack of directly comparable data at higher loads. All such measurements 

were from the real working cycle of a mining loader, and thus included prodigious use of 

the traction and center joint motors. Since there is only a single point of system power 

input measurement (the engine) and no way to determine the power split between traction, 

boom and the bucket, these measurements could not be used. 

 

There is uncertainty in the conventional hydraulic component valuations, since these are 

sold business-to-business and are challenging to find accurate estimations for. The same 

applies for mining loader operating costs, for which a good source was found but required 

some extrapolation to account for different machine size. Nevertheless, the values chosen 

should be significantly on the conservative side, especially regarding conventional 

hydraulic components. These are standard components bought in bulk, for a significantly 

lower price than the often customized single units used for this research. 

 

The control system created as part of this work, beyond its role as a simple machine 

operating interface and data gathering tool, had a few notable advantages and 

disadvantages. The prototype mining loader incorporates a large number of CAN devices, 

which are split between separate CAN buses with different protocols (J1939 and 

CANopen) and bitrates. Putting the control and diagnostics of all these on a single screen 

proved invaluable in the commissioning of the system, after which the automatic 

initialization, configuration and error handling on both device and bus level was 

extremely useful. 

 

A disadvantage was the use of a simple PID controller for controlling the boom and 

bucket movements. This was not optimal due to the various nonlinearities and delays 

present in the system. Even though this controller was modified with a simple velocity 

dependent adaptive P-factor that improved the control performance, there still were cases 

where the controller was insufficient. A more advanced controller, such as fuzzy PID 

implemented in [53] or a model predictive controller can improve this. 

9.1 Future outlook 
 

Electrification of mining equipment and other heavy machinery is on the rise. Whether it 

takes the form of pure battery-electric vehicles, hybrids, trolley line, umbilical power or 

other, this new generation of vehicles will use electricity to drive actuators and traction 

motors. This presents a favorable environment for DDH adoption. Such vehicles by 

definition have a powerful source of electricity available, negating much of the additional 

cost of implementing such for DDH only. In every case except umbilical and trolley 

power, efficiency is paramount in order to maintain good range and autonomy, 

incentivizing the use of high efficiency options such as DDH. Using pure electric 

actuators in heavy machines to solve the same problems is troublesome due to the shock 

loads encountered, a problem that is also solved by DDH systems. 

 

Modern motor controllers allow for highly precise and fast control of the PMSM/BLDC 

motors, as seen in their use in demanding applications such as camera stabilization 

gimbals, multicopters and self-balancing robots. This ability could theoretically extend 

the DDH use case to servo hydraulics such as vehicular power steering, an application 

that traditionally has had difficulties balancing the feel of hydraulics and efficiency of 

electrics.  

 

The broader trend for higher efficiency in machinery is undeniable, with the driving 

economic, political and environmental causes unlikely to abate.  
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10 Conclusions 
 

This work demonstrated that DDH can replace conventional mining loader front end 

hydraulics, providing notably higher efficiency without compromise in working ability 

or operator feel. Lifting efficiency was found to reach its highest value of 50-53% at 

cylinder speeds from 3 to 5 cm/s, corresponding to boom lifting time of 5 to 8 seconds. 

This includes those cases when the power limits of the machine are reached with high 

loads. Such behavior is a good fit for the mining loader case, as the loaders often operate 

near to or at their maximum power, where the DDH units achieve their good efficiencies. 

 

A distinguishing feature of the DDH system is the flat efficiency curve. At cylinder 

extension speeds ranging from 1.5 to 8 cm/s, reaching maximum attainable pump RPM, 

the efficiency variation was only 13 percentage points (40-53%), most of which at the 

very edges of the operating envelope. Discounting the outlier of the high speed unloaded 

movement, this drops to only 4 percentage points. The wide range of efficient operating 

points makes DDH a good choice for dynamic applications that encounter diverse 

operating conditions and allows for easier design optimization for more single purpose 

applications. 

 

The proposed system is economically viable. The estimated difference between purchase 

prices of a conventional and hybridized LHD is 43 782€, which with monthly operating 

costs 1 702€ lower results in a return of investment time of 2.1 years. LHD’s in most 

cases have working lives longer than this, making the hybrid LHD a valid investment. It 

should be noted that this is a fairly pessimistic evaluation valid only mines which do not 

directly benefit from a reduction of ICE exhaust gases. Closed mines with a ventilation-

on-demand system will see a faster return of investment time, with every liter of diesel 

saved is likewise saved from ventilation costs, which tend towards 40% of total mine 

operating costs. In addition, electric machinery in LHD’s is cheaper to maintain, whereas 

the ROI estimate assumes identical maintenance costs. Therefore, the DDH equipped 

hybrid mining loader is likely even more attractive than this estimate indicates. 
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