54 research outputs found

    Self-Replication and Self-Assembly for Manufacturing

    Get PDF
    It has been argued that a central objective of nanotechnology is to make products inexpensively, and that self-replication is an effective approach to very low-cost manufacturing. The research presented here is intended to be a step towards this vision. We describe a computational simulation of nanoscale machines floating in a virtual liquid. The machines can bond together to form strands (chains) that self-replicate and self-assemble into user-specified meshes. There are four types of machines and the sequence of machine types in a strand determines the shape of the mesh they will build. A strand may be in an unfolded state, in which the bonds are straight, or in a folded state, in which the bond angles depend on the types of machines. By choosing the sequence of machine types in a strand, the user can specify a variety of polygonal shapes. A simulation typically begins with an initial unfolded seed strand in a soup of unbonded machines. The seed strand replicates by bonding with free machines in the soup. The child strands fold into the encoded polygonal shape, and then the polygons drift together and bond to form a mesh. We demonstrate that a variety of polygonal meshes can be manufactured in the simulation, by simply changing the sequence of machine types in the seed

    Extremum-Seeking Control Optimizes VRF Energy Consumption

    Get PDF
    To a VRF (Variable Refrigerant Flow) system, outdoor unit (ODU) energy consumption is the combination of the power consumption of compressors and outdoor fans. The combined power consumption changes with discharge pressures and other conditions. Discharge pressures are controlled to its’ setpoint by manipulating fan speed. There are optimal discharge pressure points, where the combined power consumptions are at its’ minimum. Most common control approaches in industry on the discharge pressure is setting them to a constant value or calculating as a function of compressor speed and ambient temperature. Fixing it to a constant value is not a desired solution since the optimal pressure points change with load, ambient temperature and other operating conditions. Calculating as a function of compressor speed and ambient temperature, though two major factors are in the consideration, still needs lab tests and calibration to find the relation between the energy consumption and discharge pressure. Since VRF system consists multiple ODUs and IDUs (Indoor Units), the task of lab tests could be overwhelming. In this work, ESC (Extremum-Seeking Control) is used to automatically find the optimum discharge/suction pressure points when VRF is in cooling/heating operation. ESC algorithm is implemented into the VRF equipment control. When ESC is enabled, a small excitement signal applies to discharge setpoint, power consumption of compressors and fans is monitored. ESC will find the optimal discharge setpoints to minimize the combined power consumption. ESC is active in all normal operation conditions, it will optimize the energy consumption over all load ranges of heating/cooling and heat recovery operation. Simulation has been conducted to demonstrate the potential savings on the outdoor unit energy consumption

    Economic Model Predictive Control for Variable Refrigerant Systems

    Get PDF
    Variable refrigerant (VRF) systems are in a unique position to be combined with economic model predictive control (MPC) in order to reap significant benefits. In buildings with a variable utility price, it is feasible to use the building mass to shift a portion of the building heating, ventilation, and air conditioning (HVAC) load from the high priced (peak) period to the low priced (off-peak) period. It is also feasible for further savings to be visualized through a reduction of the monthly demand charge. By employing the building mass as an element to store thermal energy, one can see a significant reduction in utility costs. The MPC algorithm can accomplish this by using the building mass to store and release heat at the appropriate time to reduce HVAC usage during the peak utility price periods. This is accomplished through MPC of the indoor air temperature within the acceptable temperature set point limits. With proper, linear models, a linear programming (LP) algorithm can be employed to perform the economic optimization over the future time horizon. Savings in commercial buildings estimate HVAC cost savings from --% to --% annually

    System Identification for Model Predictive Control of Building Region Temperature

    Get PDF
    Model predictive control (MPC) is a promising technology for energy cost optimization of buildings because it provides a natural framework for optimally controlling such systems by computing control actions that minimize the energy cost while meeting constraints. In our previous work, we developed a cascaded MPC framework capable of minimizing the energy cost of building zone temperature control applications. The outer loop MPC computes power set-points to minimize the energy cost while ensuring that the zone temperature is maintained within its comfort constraints. The inner loop MPC receives the power set-points from the outer loop MPC and manipulates the zone temperature set-point to ensure that the zone power consumption tracks the power set-points computed by the outer layer MPC. Since both MPCs require a predictive model, a modeling framework and system identification (SI) methodology must be developed that is capable of accurately predicting the energy usage and zone temperature for a diverse range of building zones. In this work, two grey-box models for the outer and inner loop MPCs are developed and parameterized. The model parameters are fit to input-output data for a particular zone application so that the resulting model accurately predicts the behavior of the zone. State and disturbance estimation, which is required by the MPCs, is performed via a Kalman filter with a steady-state Kalman gain. The model parameters and Kalman gains of each grey-box model are updated in a sequential fashion. The significant disturbances affecting the zone temperature (e.g., outside temperature and occupancy) may typically be considered as a slowly varying disturbance (with respect to the control time-scale). To prevent steady-state offset in the identified model caused by the slowly time-varying disturbance, a high-pass filter is applied to the input-output data to filter out the effect of the disturbance. The model parameters are subsequently computed from the filtered input-output data without the Kalman filter applied. The Kalman gain is also adjusted as the model parameters are updated to ensure stability of the resulting observer and for optimal estimation. After the model parameters are computed, the steady-state Kalman gain matrix is parameterized and the parameters are updated using the prediction error method with the unfiltered input-output data and the updated model parameters. The Kalman gain update methodology is advantageous because it avoids the need to estimate the noise statistics. Stability of the observer is verified after the parameters are updated. If the updated parameters result in an unstable observer, the update is rejected and the previous parameters are retained. Additionally, since a standard quadratic cost function that penalizes the squared prediction error is sensitive to data outliers in the prediction error method, a piecewise defined cost function is employed to reduce its sensitivity to outliers and to improve the robustness of the SI methodology. The cost function penalizes the squared prediction error when the error is within certain thresholds. When the error is outside the thresholds, the cost function evaluates to a constant. The SI algorithm is applied to a building zone to assess the approach

    Autonomous Optimization and Control for Central Plants with Energy Storage

    Get PDF
    A model predictive control (MPC) framework is used to determine how to optimize the distribution of energy resources across a central energy facility including chillers, water heaters, and thermal energy storage; present the results to an operator; and execute the plan. The objective of this MPC framework is to minimize cost in real-time in response to both real-time energy prices and demand charges as well as allow the operator to appropriately interact with the system. Operators must be given the correct intersection points in order to build trust before they are willing to turn the tool over and put it into fully autonomous mode. Once in autonomous mode, operators need to be able to intervene and impute their knowledge of the facilities they are serving into the system without disengaging optimization. For example, an operator may be working on a central energy facility that serves a college campus on Friday night before a home football game. The optimization system is predicting the electrical load, but does not have knowledge of the football game. Rather than try to include every possible factor into the prediction of the loads, a daunting task, the optimization system empowers the operator to make human-in-the-loop decisions in these rare scenarios without exiting autonomous (auto) mode. Without this empowerment, the operator either takes the system out of auto mode or allows the system to make poor decisions. Both scenarios will result in an optimization system that has low “on time†and thus saves little money. A cascaded, model predictive control framework lends itself well to allowing an operator to intervene. The system presented is a four tiered approach to central plant optimization. The first tier is the prediction of the energy loads of the campus; i.e., the inputs to the optimization system. The predictions are made for a week in advance, giving the operator ample time to react to predictions they do not agree with and override the predictions if they feel it necessary. The predictions are inputs to the subplant-level optimization. The subplant-level optimization determines the optimal distribution of energy across major equipment classes (subplants and storage) for the prediction horizon and sends the current distribution to the equipment level optimization. The operators are able to use the subplant-level optimization for “advisory†only and enter their own load distribution into the equipment level optimization. This could be done if they feel that they need to be conservative with the charge of the tank. Finally, the equipment level optimization determines the devices to turn on and their setpoints in each subplant and sends those setpoints to the building automation system. These decisions can be overridden, but should be extremely rare as the system takes device availability, accumulated runtime, etc. as inputs. Building an optimization system that empowers the operator ensures that the campus owner realizes the full potential of his investment. Optimal plant control has shown over 10% savings, for large plants this can translate to savings of more than US $1 million per year

    Model Predictive Control for Central Plant Optimization with Thermal Energy Storage

    Get PDF
    An optimization framework is used in order to determine how to distribute both hot and cold water loads across a central energy plant including heat pump chillers, conventional chillers, water heaters, and hot and cold water (thermal energy) storage. The objective of the optimization framework is to minimize cost in response to both real-time energy prices and demand charges. The linear programming framework used allows for the optimal solution to be found in real-time. Real-time optimization lead to two separate applications: A planning tool and a real-time optimization tool. In the planning tool the optimization is performed repeatedly with a sliding horizon accepting a subset of the optimized distribution trajectory horizon as each subsequent optimization problem is solved. This is the same strategy as model predictive control except that in the design and planning tool the optimization is working on a given set of loads, weather (e.g. TMY data), and real-time pricing data and does not need to predict these values. By choosing the varying lengths of the horizon (2 to 10 days) and size of the accepted subset (1 to 24 hours), the design and planning tool can be used to find the design year’s optimal distribution trajectory in less than 5 minutes for interactive plant design, or the design and planning tool can perform a high fidelity run in a few hours. The fast solution times also allow for the optimization framework to be used in real-time to optimize the load distribution of an operational central plant using a desktop computer or microcontroller in an onsite Enterprise controller. In the real-time optimization tool Model Predictive Control is used; estimation, prediction, and optimization are performed to find the optimal distribution of loads for duration of the horizon in the presence of disturbances. The first distribution trajectory in the horizon is then applied to the central energy plant and the estimation, prediction, and optimization is repeated in 15 minutes using new plant telemetry and forecasts. Prediction is performed using a deterministic plus stochastic model where the deterministic portion of the model is a simplified system representing the load of all buildings connected to the central energy plant and the stochastic model is used to respond to disturbances in the load. The deterministic system uses forecasted weather, time of day, and day type in order to determine a predicted load. The estimator uses past data to determine the current state of the stochastic model; the current state is then projected forward and added to the deterministic system’s projection. In simulation, the system has demonstrated more than 10% savings over other schedule based control trajectories even when the subplants are assumed to be running optimally in both cases (i.e., optimal chiller staging, etc.). For large plants this can mean savings of more than US $1 million per year

    Closed-Loop Scheduling for Cost Minimization in HVAC Central Plants

    Get PDF
    In this paper, we examine closed-loop operation of an HVAC central plant to demonstrate that closed-loop receding-horizon scheduling provides robustness to inaccurate forecasts, and that economic performance is not seriously impaired by shortened prediction horizons or inaccurate forecasts when feedback is employed. Using a general mixed-integer linear programming formulation for the scheduling problem, we show that optimization can be performed in real time. Furthermore, we demonstrate that closed-loop operation with a moderate prediction horizon is not significantly worse than a long-horizon implementation in the nominal case, and that closed-loop operation can correct for inaccurate long-term forecasts without significant cost increase. In addition, we show that terminal constraints can be employed to ensure recursive feasibility. The end result is that forecasts of demand need not be extremely accurate over long times, indicating that closed-loop scheduling can be implemented in new or existing central plants

    Design and Application of Distributed Economic Model Predictive Control for Large-Scale Building Temperature Regulation

    Get PDF
    Although recent research has suggested model predictive control as a promising solution for minimizing energy costs of commercial buildings, advanced control systems have not been widely deployed in practice. Large-scale implementations, including industrial complexes and university campuses, may contain thousands of air handler units each serving a multiplicity of zones. A single centralized control system for these applications is not desirable. In this paper, we propose a distributed control system to economically optimize temperature regulation for large-scale commercial building applications. The decomposition strategy considers the complexities of thermal energy storage, zone interactions, and chiller plant equipment while remaining computationally tractable. One of the primary benefits of the proposed formulation is that the low-level airside problem can be decoupled and solved in a distributed manner; hence, it can be easily extended to handle large applications. Peak demand charges, a major source of coupling, are included. The interactions of the airside system with the waterside system are also considered, including discrete decisions, such as turning chillers on and off. To deploy such a control scheme, a system model is required. Since using physical knowledge about building models can greatly reduce the number of parameters that must be identified, grey-box models are recommended to reduce the length of expensive identification testing. We demonstrate the effectiveness of this control system architecture and identification procedure via simulation studies

    An Economic Model Predictive Control Framework for Distributed Embedded Battery Applications

    Get PDF
    Since building heating, ventilation, and air conditioning (HVAC) systems are significant consumers of primary energy, considerable efforts are being made to improve energy efficiency and decrease energy costs in these applications. Notably, substantial opportunities in the area of HVAC control exist for decreasing energy costs by shifting loads from peak periods to off-peak periods in the presence of time-varying utility prices. This load shifting is also beneficial for power companies since it results in a more constant total load allowing them to operate more efficiently. Economic model predictive control (MPC) has been shown to significantly decrease the energy costs of commercial HVAC systems via load shifting. Typically, thermal energy storage (TES) is used for this purpose by running HVAC equipment at higher rates during periods of low power prices to charge TES and at lower rates during periods of higher prices while discharging TES to meet building demand loads. However, with batteries becoming less expensive to manufacture, electrical energy storage in batteries is becoming a viable option for load shifting. Batteries can be used for both load shifting to decrease costs and revenue generation if the incentives on the electricity market are appropriate. In this work, embedded battery applications are considered. In embedded battery applications, the batteries are directly packaged with airside equipment such as air handler units (AHUs), roof-top units (RTUs), and variable refrigerant flow systems (VRFs). In this arrangement, the batteries are accessible only to the local unit and not to other units. In this paper, we propose a hierarchical control system framework for the economic optimization of distributed embedded battery units. The architecture considers both building mass storage as well as the electrical energy storage of the battery units. A high-level problem performs an economic optimization over the entire system using aggregate models. The low-level layer is broken into subsystems, each optimizing its local decisions with higher fidelity models. Advantages of this framework include no iterative communication required between subsystems, decreased computational complexity in the high-level problem allowing for real-time online implementation, and management of total demand across the entire system to reduce peak demand charges. We conclude with a simulation study demonstrating the benefits of the proposed control architecture

    A Case Study of Economic Optimization of HVAC Systems based on the Stanford University Campus Airside and Waterside Systems

    Get PDF
    Commercial buildings account for $200 billion per year in energy expenditures, with heating, ventilation, and air conditioning (HVAC) systems accounting for most of these costs. In energy markets with time-varying prices and peak demand charges, a significant potential for cost savings is provided by using thermal energy storage to shift energy loads. Since most implementations of HVAC control systems do not optimize energy costs, they have become a primary focus for new strategies aimed at economic optimization. Model predictive control (MPC) has emerged as one popular method to achieve this load shifting, while respecting system constraints. MPC uses a model of the system to make predictions and to solve an optimization problem. Much research has shown the benefits of MPC over alternative strategies for HVAC control [1]. However, some industrial applications, such as large research centers or university campuses, are too large to be solved in a single MPC instance. Decompositions have been proposed in the literature, but it is difficult to evaluate and to compare decompositions against one another when using different systems. In this paper, we present a large-scale relevant case study where solving a single MPC optimization problem is neither desirable nor feasible for real-time implementations. The study is modeled after the Stanford University campus, consisting of both an airside and waterside system [2]. The airside system includes 500 zones spread throughout 25 campus buildings along with the air handler units and regulatory building automation system used for temperature regulation. The waterside system includes the central plant equipment, such as chillers, that is used to meet the load from the buildings. Active thermal energy storage is available to the campus in addition to the passive thermal energy storage present in the form of building mass. The airside models describe the temperature dynamics in each of the 500 zones, and the waterside models describe the power consumption of the central plant equipment. The aim of the control system is to minimize costs in the presence of time-varying electricity prices and a peak demand charge as well as environmental disturbances such as weather while meeting constraints on comfort and equipment. We perform an economic optimization of the entire campus using a hierarchical system with distributed airside controllers to demonstrate the potential savings. The models from this case study are made publicly available for other researchers interested in designing alternative control strategies for managing chilled water production to meet airside loads. The aim of the case study release is to provide a standardized problem for the research community. A benchmark is provided for evaluating performance. References [1] A. Afram and F. Janabi-Sharifi. Theory and applications of HVAC control systems—A review of model predictive control (MPC). Building and Environment, 72:343–355, February 2014. [2] J. B. Rawlings, N. R. Patel, M. J. Risbeck, C. T. Maravelias, M. J. Wenzel, and R. D. Turney. Economic MPC and real-time decision making with application to large-scale HVAC energy systems. Computers & Chemical Engineering, 2017. In Press
    • …
    corecore