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ABSTRACT

Commercial buildings account for $200 billion per year in energy expenditures, with heating, ventilation, and air
conditioning (HVAC) systems accounting for most of these costs. In energy markets with time-varying prices and
peak demand charges, a significant potential for cost savings is provided by using thermal energy storage to shift
energy loads. Since most implementations of HVAC control systems do not optimize energy costs, they have become
a primary focus for new strategies aimed at economic optimization. However, some industrial applications, such as
large research centers or university campuses, are too large to be solved in a single MPC instance. Decompositions
have been proposed in the literature, but it is difficult to evaluate and to compare decompositions against one another
when using different systems. In this paper, we present a large-scale industrially relevant case study where solving
a single MPC optimization problem is not feasible for real-time implementations. The study is loosely based on the
Stanford University campus, consisting of both an airside and waterside system. The airside system includes 500
zones spread throughout 25 campus buildings along with the air handler units and regulatory building automation
system used for temperature regulation. The waterside system includes the central plant equipment, such as chillers,
that is used to meet the load from the buildings. Active thermal energy storage is also available to the campus. The
models from this case study are made publicly available for other researchers interested in designing alternative control
strategies for managing chilled water production to meet airside loads. The aim of the case study release is to provide
a standardized problem for the research community and a benchmark for evaluating performance.

1. INTRODUCTION

The control of heating, ventilation, and air conditioning (HVAC) systems in buildings has drawn widespread atten-
tion in recent years. Due to the high energy usage and sheer number of applications, even moderate savings are
impactful. Conventional control relies on tracking fixed setpoint for temperature regulation (Afram and Janabi-Sharifi,
2014). However, in markets with time-varying utility prices, there is substantial room for improvement, as economic
optimization can produce significant energy cost savings.

1.1 Optimization of HVAC Systems

An example large-scale commercial HVAC application is depicted in Figure 1. There are two main components: an
airside system and a waterside system. The airside system consists of the buildings, airspaces, and zone temperature
regulation equipment. The waterside system consists of the large equipment, such as chillers and boilers, that is
used to meet the load demand from the airside system. In these types of applications, the potential exists to achieve
savings by running chiller and other electricity-intensive equipment at higher rates during night hours when the price
of electricity is lower and less during the afternoon hours when prices are higher (Avci et al., 2013). This shifting
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Figure 1: Diagram of a typical large-scale commercial application with the airside system (buildings) on the left
and waterside system (central plant) on the right. Adapted from Raković and S. Levine (2018, Section 3.5).

of the load from peak to off-peak hours can be achieved by using thermal energy storage (TES). The two types of
TES storage considered are passive and active. Passive TES exists in the mass of the airside system as building can
be precooled. Active TES can exist in the form of a chiller water storage tank in the waterside system which can
be charged by production from chillers and discharged to meet the cooling load (Henze, 2005). A control system is
necessary to manage this decision making.

Model predictive control (MPC) has emerged as one popular method to achieve this load shifting, while respecting
system constraints. MPC uses a model of the system to make predictions and to solve an optimization problem
(Rawlings et al., 2017a). In economic MPC, the objective being optimized is economic as opposed to a conventional
tracking error. Much research has shown the benefits of economic MPC over alternative strategies for HVAC control
(Afram and Janabi-Sharifi, 2014). However, implementing MPC by solving a single large optimization problem online
for such large-scale systems is not feasible due to the large number of zones and pieces of equipment that are present.
It also may not be desirable due to the difficulty of maintaining such a system.

1.2 Motivation for Case Study

Several MPC-based schemes have been proposed in the literature. Some examples include Mayer et al. (2015),
Moroşan et al. (2010), and Touretzky and Baldea (2016). However, it is difficult to evaluate the novel ideas and
decompositions without having a common system against which to benchmark performance. In this paper, we present
a case study problem definition based on an industrial application. This case study is made publicly available for
other researchers in the HVAC community to design and test the performance and viability of various control sys-
tems.

The rest of the paper is organized as follows. In Section 2, the HVAC case study is presented. In Section 3, the models
used for the system are outlined. In Section 4, sample simulations results are shown using one particular control
architecture for this system. In Section 5, the major findings are listed.
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Figure 2: The new heat-recovery system to provide heating and cooling to the campus constructed as part of
the $485-million Stanford Energy System Innovations (SESI) project Blair (2016).

2. CASE STUDY

2.1 Background

The case study is modeled after the Stanford University campus (Rawlings et al., 2017b). Recently, Stanford University
replaced an aging natural gas cogeneration plant with a new heat-recovery system to meet the cooling and heating
loads of their campus as part of the $485-million Stanford Energy System Innovations (SESI) project (Blair, 2016). In
addition to adding heat-recovery chillers to improve efficiency, thermal energy storage tanks were added for hot and
chilled water. These large insulated tanks, along with the rest of the central HVAC plant, are depicted in Figure 2.
Johnson Controls designed the control architecture for the new central plant. Results have shown that the MPC-based
system achieves 10–15% more energy cost savings compared to the best team of trained human operators (Stagner,
2016). While this project was focused primarily on optimization of the waterside, the case study is being extended to
include treatment of the airside system as well.

Certain aspects of this real-world problem have inspired research projects for creating economically optimal methods
of controlling such a large-scale industrial system. For the case study presented in this paper, a simplified version of the
Stanford project is used to highlight the complexity of controlling a large-scale combined airside and waterside system
while removing some of the problem features and intricate details to increase clarity for a research perspective.

2.2 System

The HVAC system for the case study is a central plant that services the cooling needs of a 500-zone campus. The
HVAC plant has eight conventional chillers along with their supporting pumps and cooling towers. For simplicity, we
do not consider heating equipment, such as boilers or heat-recovery chillers. Each of the chillers has minimum and
maximum cooling capacities of 2.5 MW and 12.5 MW, yielding a total plant capacity of 100 MW cooling. Chilled
water supply temperature is held constant at 5.5 ◦C. In addition to the passive thermal energy storage present in the
form of building mass, there is active thermal energy storage with a chilled water tank. The chilled water TES storage
tank has a maximum capacity of 100 MWh cooling.

The 500-zone campus contains 25 buildings, each with 20 zones that have independent local temperature controllers.
All zone temperatures need to be kept between 20.5 and 22.5 ◦C to ensure occupant comfort. The models for the
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Figure 3: Representative ambient temperature data over a 7-day period in the summer Rawlings et al. (2017b).
In this plot, zero corresponds to midnight.

0 1 2 3 4 5 6 7

Time (days)

0.00

0.03

0.06

0.09

0.12

0.15

E
le

ct
ri

ci
ty

P
ri

ce
($

/
k
W

h
)

Figure 4: Representative electricity pricing data over a 7-day period in the summer. In this plot, zero corre-
sponds to midnight. Data provided by Johnson Controls Rawlings et al. (2017b).

equipment and zones are presented in Section 3. The airside models describe the temperature dynamics in each of the
500 zones, and the waterside models describe the power consumption of the central plant equipment.

The aim of the control system is to minimize costs in the presence of time-varying electricity prices and a peak
demand charge as well as environmental disturbances such as weather while meeting constraints on comfort and
equipment. The control system must determine the zone temperature setpoints and waterside equipment operation
schedule.

2.3 Parameters

Several loads are placed on the HVAC system. The primary disturbance considered in this study is the ambient
temperature. Typical ambient temperature data during the summer for a city in the Southern U.S. is presented in
Figure 3. To reject the loads placed on the campus, the HVAC system purchases power from the electricity market.
Two components of the pricing structure are considered in this study: time-of-use charges, which assess time-varying
prices on electricity use throughout the day, and peak demand charges, which are proportional to maximum rate of
power consumption over period of time (typically a month). Electricity pricing data obtained from Johnson Controls
over a week-long period is given in Figure 4. The monthly peak demand charge is $4.56/kW.

From these two figures, it is evident that the heat load on the campus is typically greatest (corresponding to the peak
in ambient temperature in the afternoon hours) when power costs are high. By purchasing more power when it is
cheaper during the overnight and early morning hours, operational costs of the HVAC system can be decreased using
the thermal energy storage for load shifting.
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3. MODELS

3.1 Airside System

In the airside system, models are needed to describe temperature dynamics. The dynamics of cooling a single zone
or building can be represented by an energy balance. One approach is to lump all of the zone mass and air properties
into a single zone temperature. Other models can also be used to describe the airside system dynamics. Differential
equations can be written to model the zone air and mass temperatures separately, and the mass temperature can be
further separated into a shallow mass temperature and deep mass temperature.

For simplicity, we considered the lumped model for the temperature of zone i as given by

Ci
dTi
dt

= −Hi(Ti − Ta)−
∑
j 6=i

βij(Ti − Tj)− Q̇c,i + Q̇other,i (1)

in which Ci is the thermal capacitance of the zone, Hi is a scaled heat transfer coefficient with the ambient, Ta is the
ambient temperature, Q̇c,i is the cooling rate from the HVAC system, Q̇other,i is an external load place on the zone, and
βij characterizes the degree of coupling between zones i and j. If zones i and j are not adjacent, then βij = 0.

Since the supervisory control system determines the zone temperature setpoints, a model is also need to relate the
zone temperature setpoint Tsp,i to the cooling rate Q̇c,i delivered to the zone. Using an ideal proportional-integral (PI)
controller, the linear cooling duty controller model is given by

Q̇c,i = Q̇ss,i +Kc,i

[
εi +

1

τI,i

∫ t

0

εi(t
′)dt′

]
εi = Tsp,i − Ti

(2)

in which Kc,i and τI,i are the PI controller parameters and εi is the tracking error. Saturation is included as feature for
airside PI due to constraints on the maximum Q̇c,i that is achievable. Since it may take zones up to an hour to respond
to a setpoint change, the dynamics of zone PI controllers cannot be neglected by the supervisory control layer. For
convenience, both models can be converted to state-space form.

3.2 Waterside System

In the waterside system, models are needed for equipment electricity consumption and storage tank dynamics. Equip-
ment models are static, determining resource consumption as a function of relevant inputs for a given steady-state
operating point. While these units do experience transient dynamics during startup and shutdown, these effects are
moderated by local regulatory controllers, and rapid startups and shutdowns are prevented by enforcing explicit dwell
time constraints in the waterside optimization problem. By contrast, storage tank models are necessarily dynamic, as
storage tanks are used for time-shifting of demand.

For the chilling plant used in the case study, the three types of equipment are chillers, cooling towers, and pumps.
Figure 5 shows the mass and energy flows for this system. Note that the real system consists of multiple pieces of each
type of equipment arranged in parallel. Each chiller is modeled using the semi-empirical Gordon-Ng model, Lee et al.
(2012) defined below:

WCH :=

(
QCH + a1TCHWS + a2

(
1− TCHWS

TCWS

))
TCWS

TCHWS − a3QCH
−QCH (3)

The parameters a1, a2, and a3 are obtained via regression with measured data. For the purposes of optimization, the
temperatures are assumed to be fixed parameters. Each cooling tower uses a a simplified effectiveness model Jin et al.
(2007) for calculating cooling duty, with a simple cubic fit for fan electricity Braun and Diderrich (1990).

QCT = QCH +QCH :=
c1(mCW)c3

1 + c2

(
mCW
mair

)c3 (TCWR − TWB) (4)

WCT := κ(mair)
3 (5)
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Figure 5: Diagram of a single chiller, cooling tower, and pump.
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Figure 6: Diagram of stratified tank model.

With fixed TCWR and known TWB, (4) can be rearranged to solve for the required mair, which is then used in (5) for
electricity calculation. Coefficients c1, c2, c3, and κ are obtained via regression. Finally, pumps are modeled with a
black-box empirical model

WP := b1 ln (1 + b2VCHW) + b3VCHW + b4 (6)

with regression coefficients b1 through b4. Note that the flows VCW and mCW are obtained from QCH and QCT via the
appropriate constant-heat-capacity energy balances.

Active storage tanks are modeled using a two-layer stratified tank model similar to Ma et al. (2012). As diagrammed
in Figure 6, the hot and cold sections are each assumed to be uniform in temperature, with heat exchange between the
two layers (proportional to the temperature difference). Total volume Vhot +Vcold is held constant. The dynamic model
is a straightforward enthalpy balance (using known temperatures for streams entering the tank) and is omitted from
the text for brevity.

In chilled water tanks, the main quantity of interest is the enthalpy of the cold section Hcold. For the purposes of
optimization, the nonlinear tank model is replaced by a simple linear approximation of the form

ds

dt
= −σs+ ηQ̇storage (7)

in which s := Hcold is the enthalpy of the cold section and Q̇storage is the rate of cold enthalpy inflow (positive) or
outflow (negative). The coefficients σ and η are identified from data. Figure 7 shows simulations of the approximate
linear model alongside the full nonlinear model. Even over the full 10-day horizon, the linear model fits very well,
and thus is sufficient for optimization.
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Figure 7: Linear fit of nonlinear stratified tank model. Open circles show data from the nonlinear model, while
solid lines show forward simulations of the linear model starting from each day’s initial condition.

3.3 Availability

The full set of data and model parameters for the case study are made publicly available for researchers in the HVAC
community. They can be found on the following website: https://hvacstudy.github.io/. The aim of
the release is to encourage other researchers to propose alternative control systems and to provide a common basis
for performance evaluation of these strategies on a large-scale industrially relevant system. In the next section, we
simulate the performance of one such control system that relies on a hierarchical two-layer structure.

4. SIMULATION STUDY

4.1 Control System

With the case study system defined, a supervisory control system can be used to make decisions. We consider the
two-layer hierarchical control system presented in Patel et al. (2016). This structure relies on using a high-level
problem with aggregate models of the airside and waterside systems to perform a plant-wide economic optimization.
The solution is then sent to low-level airside and waterside controllers that use more detailed models to compute the
dispatched trajectories which meet the constraints. The low-level controllers follow the load computed in the high-
level problem as closely as possible. One low-level airside controller is used per building, to ensure the problem can
be solved quickly online.

Within the optimization problem, the following simplifications are made in the low-level problems:

• Saturation of PI controllers is not explicitly modeled. This effect is moderated by including bounds on requested
cooling, but it still may introduce mismatch when the saturation constraints are active in the physical system.

• The nonlinear equipment models in (3) through (6) are approximated as piecewise-linear. This approximation
allows the waterside problem to be solved as an MILP, and arbitrary accuracy can be achieved by using more
pieces, although at the cost of computational speed (Risbeck et al., 2017).

• The approximate linear model for the storage tank is used instead of the full nonlinear model.
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Figure 8: Results from the High-Level Problem. The top plot shows the overall optimal production schedule.
Negative values of storage here denote charging of tank, while positive values indicate discharging of tank. The
bottom plot shows the average building temperatures. The red line highlights one particular building, with the
remaining ones shown in black.

4.2 Results.

This control architecture was applied to the case study system. The results from the high-level optimization are shown
in Figure 8. The high-level problem decides to use a combination of active and passive thermal energy storage to shift
the power load from peak hours to off-peak hours. These load profiles are sent to the low-level problems. Figure 9
shows the low-level airside results for all 500 zones, including the zone temperature setpoints dispatched to the system.
Figure 10 shows the equipment operation schedule computed by the low-level waterside optimization to meet the load
from the high-level problem. Load shifting is able to reduce costs by purchasing more power when prices are lower
during the early morning hours and charging the active storage tank as well as precooling buildings and purchasing
less power when prices are more expensive during the peak hours by discharging the storage tank and letting the
zones heat up to the upper bound of the comfort zones. As a result, the total cost for this control policy is $78,689.
For comparison, the cost without load shifting is $94,878, hence using optimization with TES results in 17% cost
savings.

5. CONCLUSIONS

An industrially relevant case study for large-scale commercial HVAC systems is presented. The study is based on
the Stanford University central plant. Both airside and waterside systems are considered as well as thermal energy
storage. Models and data are made publicly available for the research community to investigate various control system
designs. A sample simulation is performed for one particular decomposition which can be solved in real-time for an
online implementation of MPC for large HVAC systems.

Future research includes extending the data set to from one week to one year and performing a year-long simula-
tion. Additionally, a small-scale system for which the centralized MPC solution can be computed may be used as a
benchmark to measure the performance of the decomposition.
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Figure 9: Results from the Low-Level Airside Problems. The optimal zone temperatures and setpoints com-
puted from all 500 zones are shown with the red line denotes one particular zone as an example.
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