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ABSTRACT 
 

An economic model predictive control (MPC) framework is used to determine how to optimize the allocation of 

energy resources across a central energy facility including chillers, hot water generators, and thermal energy storage; 

present the results to an operator; and execute the plan. The objective of this MPC framework is to minimize cost in 

real-time in response to both real-time energy prices and demand charges as well as allow the operator to 

appropriately interact with the system. Operators must be given the correct intersection points in order to build trust 

before they are willing to turn the tool over and leave it in fully autonomous mode. Once in autonomous mode, 

operators need to be able to intervene and impute their knowledge of the facilities they are serving into the system 

without disengaging optimization.   

 

1. INTRODUCTION 
 

Design and operation of central energy facilities is becoming an increasingly difficult problem. High efficiency 

products are available; but it is necessary to plan for and control the products properly to realize the potential cost 

savings (Ma & Wang, 2011)(Yu et al., 2008). Recently, model predictive control for central energy facility was 

developed (Wenzel et al., 2014). It was established as a planning tool to help engineers choose a type of facility and 

the equipment types and capacities in that facility. Simulation showed the potential for savings of over 10%. In this 

paper, an operational tool is described that is capable of distributing the load across the various subplants, selecting 

the equipment to turn on, determining optimal setpoints, and most importantly communicating this information to 

the building automation system (BAS) for execution. In this way, the operational tool is capable of realizing this 10 

to 15% savings estimated by the planning tool. 

 

In order for any of the savings to be realized, the operational tool must remain in autonomous mode. A system with 

energy storage that is capable of supplying the campus load for as many as 10 hours has too many variables for any 

operator to efficiently manage. However, with the proper interface an operator is capable of augmenting the system 

with any knowledge that may be missing, and allowing the model predictive control algorithm to incorporate that 

additional knowledge into the algorithm’s decisions. 

 

Cascaded control logic is ubiquitous in building control systems. Typically, low level feedback controllers produce 

the actuator input for a system (e.g., drive speed), whereas supervisory controllers produce setpoints for these low 

level controllers. The reasons for this hierarchy are numerous:  the low level requires feedback to respond to 

disturbances, the low level operates a much faster sample rate to keep control of the equipment, there is a decoupling 

of purpose to improve debugging capability when there is an issue, etc.  

 

The operational tool presented in the present paper continues the idea of cascading the control algorithm. It 

describes how several cascaded sub-algorithms in a supervisory economic model predictive control algorithm 

provide a natural interface for the operators to interact with the system, thereby increasing the probability the system 

remains in autonomous mode. Of course, adding interfaces and cascading the control problem cannot improve 

optimal performance (as each level does not have all the information of the previous level). Cascaded control is still 

often used to convert a computationally unsolvable (in real-time) mixed-integer, non-linear optimization problem 

into several smaller, solvable, problems. With the current advances of computing technology and optimization 

techniques, it is possible to see a future where the hierarchy of control is not necessary and a single omniscient 
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system can calculate all required system inputs for optimal control. There may still be debate as to whether this 

control would be “optimal” in a system where humans are still ultimately responsible for the facilities operations. 

Facility owners and operators of large facilities (where the most energy savings can be obtained) seem unmotivated 

to move to a system that gives them no control or only gives them the control to either “live with what the computer 

says” or “override the outputs”. When posed with this type of system, operators may try to outthink the optimal 

control because there is no information as to why the controller made the decisions it did. Thus, the system will 

remain in manual override and no optimization will be performed. A cascaded system, however, decouples the 

purpose of each individual sub-algorithm, allowing the operator to understand purpose of each output, thus allowing 

him or her to comprehend the decisions made by the system. A system that the operator understands and has the 

ability to add knowledge to is more likely to be left in autonomous mode and capture the savings projected during 

planning. 

 

A single omniscient control system has not only a problem with the user’s ability to understand the output, but also 

the user’s ability to change portions of the output. The operator of a large energy facility will likely still have more 

information about the plants operation than the control system, simply because it not possible to individually 

program all factors that could affect the optimal control decisions.. Furthermore, a control system that comes with a 

more general artificial intelligence where the inputs are essentially anything that it can be exposed to will fail in 

combinations of inputs that it has not yet seen. As long as there is an operator that has been on the job longer than 

the AI, the operator may have relevant information to improve the control systems information. Thus, it is necessary 

that contemporary central energy facility control systems provide an easy to understand interface for the operators to 

both gather information and to augment the system with their own knowledge. 

 

In the current paper, an operational tool is described which is capable of autonomous model predictive control and 

optimization of a central energy facility. The goal is not to provide a tool that runs the plant in the background with 

no potential for operator interaction, but to provide a tool the is capable of running a plant while providing for 

human-in-the-loop interactions where the operator can view future decisions of the control algorithm and easily 

provide additional information to the system as necessary. It is shown how the cascaded optimization problem 

provides a natural interface for the operators to make changes to the system. First the optimal control problem is 

described, the inputs and outputs of the system are enumerated and the optimization objective defined. Then a five 

layer cascaded model predictive control system is described. Finally, it is shown how this cascaded control problem 

is made into a tool for online plant operation with all the proper intersection points where the operators can interact 

with the system. Results from a live deployment of the operational tool are shown, illustrating that the operators are 

able to control the plant while leaving the system in autonomous mode. Thus, the majority of the potential savings 

are realized. 

 

The first sub-algorithm is the prediction of the energy loads of the campus; i.e., the inputs to the optimization 

system. The predictions are made for a week in advance, giving the operator ample time to react to predictions they 

do not agree with and override the predictions if they feel it necessary. The predictions are inputs to the subplant 

energy distribution optimization. The energy distribution sub-algorithm determines the optimal distribution of 

energy across major equipment classes (subplants and storage) for the prediction horizon and sends the current 

distribution to the equipment selection and setpoint sub-algorithms. The operators are able to use the subplant-level 

optimization for “advisory” only and enter their own load distribution into the equipment level optimization. This 

could be done if they feel that they need to be conservative with the charge of the tank, etc. Finally, the equipment 

level optimization determines the devices to turn on and their setpoints in each subplant and sends those setpoints to 

the building automation system. These decisions can be overridden, but should be rare as the system takes device 

availability, accumulated runtime, etc. as inputs. The final tier is the low level control layer. To override this layer 

the operator has to put the building automation system (BAS) in “hand” mode and write specific outputs actuator 

inputs:  valve positions, drive speeds, etc. This is likely to only be done during testing or maintenance of the system. 

 

2. CASCADED CONTROL 
 

As stated in the introduction the model predictive control and optimization of central energy facilities is broken into 

five distinct subalgorithms each with a specific purpose. By limiting the scope of any particular sub-algorithm of the 

control scheme, it is easier for an operator supervising the control to decide if intervention is necessary, and if 

necessary, how to intervene. The five sub-algorithms:  prediction, energy distribution, equipment selection, system 
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setpoints, and equipment control are described below. Much literature can be found for individual many of the sub-

algorithms. It is the combination of these building blocks cascaded that makes possible a model predictive control 

scheme for the operational tool that gives the operator the ability to properly interact with the system. A flow chart 

of the control algorithm is shown in Figure 1 with the inputs and outputs of each of the five sub-algorithms clearly 

defined.  

 

2.1 Prediction 
Regardless of the method, to perform economic model predictive control, it is necessary to have the loads of each of 

the energy sinks and the pricing for purchasing energy from each of the energy sources for the length of the horizon. 

These predicted loads and rates then become the input to the economic model predictive control algorithm. 

 

To perform prediction several factors contributing to the load/rate can be considered. For loads (and rates) it is 

typical to use the day-type (day of week, occurrence of special events), time of day, and weather conditions. 

Historical load data along with the independent factors used are collected and used to train a model. Model training 

can be done offline first to load the initial model. Subsequent model updates should be done automatically and 

online at regular intervals or continuously to account for changes in the model. However, the updates should be done 

in a separate process to avoid delaying the process performing the control. 

 

In the present operational tool, finding an estimate of the future load, hkl 
ˆ , prediction is done by adding a 

deterministic part, dk, and a stochastic part, sk, (ElBsat & Wenzel, 2016) 

 

      hkhkhkhkhk Nhorizonhesmdl ,,2,1,0;;ˆ    , (1) 

 

Weather Data, Day Type
Time Of Day, Current Loads/Rates

Prediction Algorithm

Energy Distribution

Equipment Selection Equipment Setpoints

Equipment Control

Equipment 

Loads, Rates for long horizon

Subplant Productions for
 long horizon

Current Subplant 
Production

Current Device States, 
Water Temperatures

Equipment Setpoints

Current Valve Positions, 
Drive Speeds, Etc.

On/Off Decisions

 
Figure 1: Flow chart of an operational tool using cascaded model predictive control. 



 

 3548, Page 4 
 

4th International High Performance Buildings Conference at Purdue, July 11-14, 2016 

where, 

 

  ;kkkk mdle  . (2) 

 

The purpose of the deterministic model is to account for factors ( mk ) that have a known relationship to the load. 

The relationship between the factors, such as weather, day type, and time-of-day, is a steady-state function. The 

parameters θ can be found by various curve fitting strategies. The purpose of the stochastic model is to update the 

prediction of the deterministic model base on its current error. Because it is impossible to account for every factor 

that can affect the load, it is necessary to update the prediction for short term prediction errors. To perform this an 

auto-regressive model is used. The difference between the predictions by the deterministic model is passed through 

an auto-regressive predictor and the output is added back to the prediction. Thus allowing for un-modeled 

disturbances to be accounted for in the overall prediction. 

 

2.2 Energy Distribution 
The predicted loads and rates from the prediction sub-algorithm are then directed to the energy distribution sub-

algorithm where they are coupled the current subplant production in order to produce the optimal energy distribution 

over the entire horizon. 

 
At a high-level, a central energy facility serving a large campus can be represented by the manner in which the 

energy can be distributed across the campus. An energy facility consists of subplants, formed of like equipment, that 

are capable serving campus by converting purchased energy (electricity, natural gas, etc.) into the energy required 

by the buildings (chilled water, steam, etc.). Mathematically, subplants describe a mapping from the space of 

independent decisions of that subplant to the space of the subplants productions and consumptions: 

 

   











c

p
fwheref subplant

nnn cp : . (3) 

 

An energy distribution diagram is shown in Figure 2. The energy facility pictured consists of five subplants capable 

converting utilities:  electricity, natural gas, and water to chilled water and hot water. The job of the energy 

distribution sub-algorithm is to optimize the cost of purchasing energy, J, subject to constraints including:  subplant 

capacities, equipment models, and energy balance equations at each resource: 

 

Chiller Subplant

HR Chiller Subplant

Towers

Hot Water Generator

Dump HX

Water TES

Water TES

Electric Utility

Natural Gas Utility

Water Utility

Electricity

Water

Natural Gas

Condenser 
Water

Hot Water

Chilled Water

Chilled Water Load

Hot Water Load

 
Figure 2: Energy distribution diagram for a plant with five subplants and two energy storage elements. 
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   
utility horizon

timeresource timepurchasecostJ ,, , (4) 

subject to, 
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,0arg ,

,,,

horizontimeresources

requestsedisch

nconsumptioproductionpurchase

sinks

resource

storages

timeresource

subplants

timeresource

subplants

timeresource

sources

timeresource









 

 (5) 

 

The formulation of this in a linear programming framework is described in (Wenzel et al., 2014). In general, the 

output of the energy distribution sub-algorithm is the amount of resource (typically energy, except in the case of 

water for the cooling towers) that is disturbed on the connections in energy distribution diagram of Figure 2. 

 

The energy distribution level is responsible for determining the energy distributed at every hour during a prediction 

horizon for several days. If the prediction horizon is one week, the prediction horizon contains 168 hours. It is this 

that causes the economic model predictive control to become difficult to solve. For a modest sized energy facility 

there may be around 25 pieces of equipment that can be turned on/off as well as a similar number of setpoints to 

control. While a mixed integer, non-linear program with 25 binaries and 25 continuous variables can be solved in a 

reasonable amount of time, when that it is multiplied by the 168 hours in the horizon there become 4200 binaries 

and 4200 continuous variables and problem becomes much more difficult. By limiting the problem to only the 

energy distribution, the problem can be posed as a linear program there by greatly reducing the computational time 

for the sub-algorithm that has the most decision variables due to the multiplicity of the long horizon. 

 

2.3 Equipment Selection 
Given the request for the subplant to produce a certain amount of energy for the entire length of the long horizon, it 

is possible to decide which equipment should be turned on/off. The purpose of the equipment selection sub-

algorithm is to determine a method for mapping the independent decisions of a subplant to the on/off decisions of 

the equipment inside that subplant. There is not a need for a horizon at the equipment decision level. Its job is to 

minimize the energy use while producing the load request from the energy distribution level. However, it may be 

desired to display the expected device decisions for a short horizon. Assuming this is the case, then the equipment 

selection sub-algorithm can simply be called several times using the future values requested by the energy 

distribution level.  

 

There are several approaches to decide which devices should be turned on (Deng et al., 2013). A dynamic 

programming version is to build the optimal decision points from a single device up. This done by taking two 

devices and generating the optimal performance of the subplant with these two. Combining the optimal performance 

of the first two devices with the next device and finding the optimal performance with these three devices. The 

process of adding one more device is continued until all devices have been added. An example of the process for 3 

chillers is shown in Figure 3. First chillers 1 and 2 are combined by comparing the electricity used for all each 

chiller and both chillers (it was assumed that each chiller must run at the same part load ratio). The minimum 

electricity used is found for each amount of production and the device selection that produces this is stored, Figure 

3b. The optimal place to on chiller 2 is at approximately 3150 kW. Now the third chiller is combined by comparing 

the energy use of the result from combining chillers 1 and 2 with chiller 3 and the sum of the two of them, Figure 3c. 

Now it is possible to see that it optimal selection strategy is to run chiller 1 up to 3150 kW then run chillers 1 and 3 

to 4000 kW, chillers 1 and 2 from 4000 to 5250, and all chillers above that load. 

 

2.4 Equipment/System Setpoints 
The purpose of the setpoint sub-algorithm is to output the setpoints that are used in order to obtain the loads 

specified by the energy distribution algorithm with the equipment determined by the device selection. Again, in this 

sub-algorithm, there is not a need for a horizon. If a display horizon is required then the setpoint sub-algorithm can 

be called several times using the future values requested by the energy distribution level. This layer requires a plant 

model and needs to optimize the setpoints given the constraints representing the optimal energy distribution and 
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equipment selection. Conceptually, this may be one of the simpler sub-algorithms, as it is a call to a nonlinear 

optimization routine where the cost function,  SPxJ , is the cost calculated by a steady-state simulation of the plant 

model given the current setpoints being evaluated. While conceptually simple, expressing the steady-state cost of the 

energy facility given several setpoints and device selections in a manner that can solved quickly enough for the 

nonlinear optimizer to converge in short amount of time is difficult. The equipment/system setpoints that produce 

the lowest cost are computed and set to the equipment control sub-algorithm for final execution of the plan.  

 

2.5 Equipment Control 
The equipment control layer exists in the BAS and is typically implemented by PID controllers. Its job is to 

manipulate the actuation points so that the measured values are at the setpoints calculated by the equipment/system 

setpoints sub-algorithm. This layer of control is likely to exist at any existing central energy plant.  
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Figure 3: Determining the optimal equipment selection using the principle of optimality. a) The performance of 

chillers 1, 2, and 3 each with a 3510 kW (1000 ton) capacity. b) locus of possible chiller production and useage 

using only chillers 1 and 2. c) locus of possible chiller productoion and useage when chiller 3 is combined with 

the minimal use of chillers 1 and 2 
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3. OPERATOR INTERACTION 
 
Empowering the operators to impart their knowledge through human-in-the-loop decisions while remaining in 

autonomous mode is likely the most powerful tool the engineer design the optimization system has in maximizing 

the time that the system spends in automatic mode. It is likely impossible for the optimization algorithm to take into 

account explicitly all factors that can influence the optimal control sequence. In the near term, it is equally unlikely 

that an AI could be placed on the site and learn all the factors that operators already know. 
 

3.1 Predictor Overrides 
Periodically, the prediction algorithm will not take into account a factor that has a significant effect on the load. A 

common example is special events. When this occurs, the operator would have to take the system out of autonomous 

mode if no interface was given to allow the user to override the prediction. Instead, the current system allows the 

operator to view the prediction and add an override that will be used during optimization. 

 

For the optimization and control algorithm to be autonomous, the system must produce outputs on a regular interval. 

It is impossible to allow the system to wait for an operator to override any predictions. Instead, the system must 

output load and rate predictions for several hours (days) into the future. The operator then has the ability to make a 

decision about the load and override it if necessary. If the override is far enough in the future it should have little 

effect on the current decisions and the system will have the time to optimally respond to the new information.  

 

Figure 4 shows a capture of the operational tool. The cooling load has been predicted for the next 7 days of 

operations. Here an operator decided that the load in the morning of June 23rd was too small, and decided to override 

the load to be larger. Overridden predictions are shown in yellow in the figure. The knowledge of the increased 

loads provided by the operator is already being used to optimally distribute energy across the subplants and the 

storage, shown in Figure 5. By giving the operator the time to decide if an override is required for a future dispatch 

it is also possible to give the model predictive control algorithm time to blend the new information into the dispatch 

between the current time and the override without having a large change or disturbance in current operations when 

the override is added.  

 

3.2 Energy Distribution Overrides 
In the case that the operator is not satisfied with the high level load distribution created by the energy distribution 

sub-algorithm, constraints can be entered in order to force the energy distribution sub-algorithm to allocate a specific 

load to a specific subplant. Again, optimization can continue as expected subject to the additional constraints, 

 
Figure 4: Screen capture of an operational tool while the operator is using the predictor override interface. 
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thereby allowing the operator to augment the system with his knowledge rather than simply taking command of 

control. If the constraint is added with ample time before it occurs, the model predictive control algorithm should 

have the time to blend the new information into the dispatch without creating a disturbance in current operations.  

 

Additionally, the operators are able to use “manual mode” in which they are capable of specifying the production 

they want performed by each subplant. In manual mode, equipment selections, setpoints, and equipment control still 

follow their normal path. However, the dispatch is only updated on the operator’s request. The allocation developed 

by the energy distribution sub-algorithm is used as advisory information. 

 

3.3 Equipment Selection Overrides 
In most cases, operators should not have a preference of which equipment runs to produce the desired load. The 

exception to this rule is when a device needs to be removed from service for maintenance. Again, it is undesirable to 

force the operator to remove the system from autonomous mode when equipment must be taken out of service. In a 

large plant there is constantly maintenance to be done. Requiring all equipment available to perform economic MPC 

would drastically reduce the amount of time the system spends in autonomous mode.  

 

When equipment is not to be run the operator can remove the equipment from service using the user interface. Using 

this interface the operator tells the operational tool that the equipment cannot be used during a certain time period. 

Both the energy distribution and equipment selection sub-algorithms use this information to produce a dispatch that 

is optimal subject to the new constraints. As in the previous examples, if the equipment is scheduled out of service 

in advance it should not cause much of a disturbance in current operations. In Figure 6 two chillers have been 

scheduled out of service.  

 

The expected dispatch is available for a horizon so that the operator has time to decide if anything must be 

overridden. This also gives the operator the ability to plan short term maintenance. If chiller 2 is not scheduled to be 

turned on for the next two hours, it would be a good time to perform any maintenance that requires a short amount 

of time. Likewise, if the operator sees that the chiller subplant is not scheduled to run for the next five days then it is 

possible for all the chillers to be taken out of service and more substantial maintenance performed with no 

substantive change to the central energy facility’s operations cost. 

 

3.4 Setpoint and Equipment Control Overrides 
Changes in the setpoints determined by an operational tool and the low level equipment control that realize those 

setpoints should rarely be overridden. No user interface is provided to override these items in the operational tool. 

However, these points can be overridden in the building automation system. If a point in the building automation 

 
Figure 5: Operational tool dispatch zoomed to show the next 12 hours of energy distributions. 
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system is overridden an operational tool will not be able to write the setpoint and it will be impossible to carry out 

an unadjusted dispatch. While it is not optimal for any of the setpoints or low level control logic to be overridden 

and in “hand” mode, it is likely to happen. Instead of forcing the operator to take the operational tool offline when 

overriding the BAS logic, it is better to respond to the overrides. The operational tool looks to verify that none of the 

logic it must interact with has commands that are sent at a higher priority than the priority at which the operational 

tool writes. If there is a higher priority command, the equipment controlled by that logic is “unavailable” to the 

operational tool and optimization must be performed with the new constraints. 

 

4. REMARKS AND CONCLUSIONS 
 

Allowing the operator the ability to override has meant that the system is in autonomous mode a large majority of 

the time. The operational tool was installed on a new construction site during the commissioning of the new plant. 

Figure 7 shows a plot of system mode over a three week period from February 22 until March 15. The system was in 

autonomous mode for approximately 95% of the time. While it is desired that the amount of time spent in 

autonomous mode approach 100%, given that the plant was new construction and the operators were still managing 

chillers that tripped periodically, 95% autonomous mode shows that the operators trust their ability to make the 

proper control changes by modifying the constraints through the operational tool interface rather than completely 

removing it from manual mode. 

 

Because of the large amount of time spent in autonomous mode the operational tool is able to save the money that 

was originally expected during the planning phase. Figure 8 shows the comparison of the central energy facility cost 

as run on site to the expected cost assuming the control algorithm had perfect knowledge of the loads and electrical 

rates and was always in automatic mode (i.e., a planning mode style run). The chart shows that the central energy 

facilities operational cost for this three week period is only 4% greater than the theoretical best the economic model 

predictive control algorithm could have done (with perfect prediction of loads and rates). 

 

The model predictive control framework used to produce an operational tool for autonomous control of central 

energy facilities was shown to capture the majority of the 10 to 15% savings estimated by the planning tool. This 

would not be possible if the system did not remain in autonomous mode. However, by giving the operators the 

appropriate interfaces to augment their knowledge with the operational tools model predictive control kernel it was 

possible to keep the time spent in autonomous mode above 90%. 

 
Figure 6: Interface of the operational tool showing two chillers taken out of service. This will cause the model 

predictive control algorithm to choose the optimal dispatch without using this equipment at the specified times. 
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Figure 7: Screen capture of an operational tool while the operator is using the predictor override interface. A 

value of “1” incidates the economic MPC algorithm is in autonomous mode. 

 
Figure 8: Comparison of energy facility operational cost as run on site (blue) to simulated run where all loads 

are perfectly predicted (grey). 
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