
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

2018

Economic Model Predictive Control for Variable
Refrigerant Systems
Brett Lenhardt
Johnson Controls Inc., United States of America, brett.m.lenhardt@jci.com

Matthew J Ellis
Johnson Controls, Inc., United States of America, matthew.j.ellis@jci.com

Robert D. Turney
Johnson Controls Inc., United States of America, Robert.D.Turney@jci.com

Follow this and additional works at: https://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Lenhardt, Brett; Ellis, Matthew J; and Turney, Robert D., "Economic Model Predictive Control for Variable Refrigerant Systems"
(2018). International Refrigeration and Air Conditioning Conference. Paper 1845.
https://docs.lib.purdue.edu/iracc/1845

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 2125, Page 1 

Economic Model Predictive Control for Variable Refrigerant Flow Heat Recovery Systems 

Brett M. LENHARDT1*, Matthew J. ELLIS1 

1Johnson Controls Inc.; Technology and Advanced Development, Building Efficiency, 
Milwaukee, WI, United States of America 

brett.m.lenhardt@jci.com*, matthew.j.ellis@jci.com 

* Corresponding Author

ABSTRACT 

Variable refrigerant flow (VRF) systems are in a unique position to be combined with economic model predictive 

control (MPC) in order to reap significant cost saving benefits.  In buildings that are subject to variable utility pricing, 

it is feasible to use the building mass to shift a portion of the heating or cooling load from the high priced (peak) period 

to a lower priced (off-peak) period. 

A non-linear optimization approach is applied to VRF heat recovery systems in order to determine the optimal 

heat/cooling loads and temperature setpoints over the horizon.  Simulation of a commercial building shows annual 

heating, ventilation and air conditioning energy and cost savings of 22% and 25% (respectively). 

1. INTRODUCTION

Variable refrigerant flow (VRF) systems are capable of satisfying building heating, ventilation and air conditioning 

(HVAC) needs under heating or cooling conditions.  Typical commercial VRF systems, not only provide heating and 

cooling capabilities, but also the ability to simultaneously heat and cool different zones.  Systems that provide for 

simultaneous heating and cooling of different zones are referred to as heat recovery systems.  In these systems, the 

refrigerant is used to transport the energy (or heat) from one zone to another zone.  Thus the energy efficiency under 

these conditions is improved as compared to separate heating and cooling equipment.  In essence, a heat recovery 

VRF compressor performs the work necessary to simultaneously satisfy the heating and cooling needs within a 

building. 

In Figure 1 below, a simple representation of a VRF heat recovery system is shown.  The basic components include 

indoor units, outdoor units, and piping.  The piping transports liquid and vapor phase refrigerant to and from the indoor 

units (depending on whether heating or cooling is required).  The indoor units condense or evaporate refrigerant in 

order to provide the individual zone heating or cooling (respectively).  Outdoor units compress refrigerant and perform 

either condensation or evaporation as necessary, in order to satisfy the overall energy balance. 
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Figure 1: Typical Installed VRF System 

The purpose of this paper is to illustrate the potential savings when applying economic model predictive control (MPC) 

algorithm to VRF systems employing heat recovery.  This paper will use simulation to show that by applying the 

technology to VRF systems, one can reduce HVAC costs.   

2. PREVIOUS WORK

Economic MPC is a promising technology for energy cost optimization of buildings because it provides a natural 

framework for optimally controlling such systems to minimize the energy cost while meeting system constraints (Ma 

et al., (2012); Mendoza-Serrano & Chmielewski, (2012); Touretzky & Baldea, (2014); Patel et al., (2016), in press). 

Previous work has established that economic MPC can be used to minimize HVAC utility costs in buildings subject 

to varying utility rates.  Ellis and Wenzel, (2017); have described a two-step, hierarchical MPC framework designed 

to leverage building mass by temporally shifting HVAC loads within a variable utility pricing environment and thus 

providing economic savings.  Based on this algorithm, temperature setpoints are delivered to individual zones for the 

greatest economic savings. 

3. APPROACH

3.1 Model 
In order to accommodate a heat recovery system, a model was developed consisting of 2 zones connected to a single 

VRF system.  Each zone has a single VRF indoor heat exchanger unit capable of providing heat from compressed 

refrigerant vapor or cooling from high pressure liquid.  These are connected to a single outdoor unit comprised of a 

compressor and a single heat exchanger.  The model abstraction for each zone is represented as the thermal circuit 

shown in figure 2 as shown by Tapiero Bernal and Ellis (2107). 
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Figure 2: Circuit Representation of a Single Zone 

where: 

Tia – indoor air temperature.

Toa – outdoor air temperature.

Tm – thermal mass temperature.

Cm – lumped mass thermal capacitance.

Cia – indoor air thermal capacitance.

Rmi – indoor air-thermal mass thermal resistance.

Roi – indoor air-outdoor air thermal resistance.

Q̇hvac – sensible HVAC heating or cooling (+/- respectively).

Q̇load – internal heat loads due to solar radiation, occupancy, lighting and electrical equipment.

3.2 Assumptions 
 In a more sophisticated model, one could model and include the indoor air dynamics, the saturation limits of

the HVAC equipment, and the HVAC control dynamics to deliver a Tia controlled to a temperature set point

(Tsp).  However, for the purposes of this work, these dynamics are combined and Tia is modeled to be equal

to the room temperature set point (Tsp) with a constant derivative limited to ±2 °C/hr.  This greatly simplifies

the modeled equations and also reduces the number of model parameters to be fit.  Considering that most

HVAC equipment (with temperature control) will not deliver a response faster than this, this is not a bad

assumption and not critical to the results.

 Also, for the purposes of this work, the coefficient of performance (COP) is assumed to be constant with a

value of 3.0.  It is the ratio of the amount of cooling performed to the energy input to the compressor.

Energy delivered to fans is much smaller than the energy delivered to the compressor and is ignored.

 The HVAC equipment has sufficient capacity to maintain and deliver the desired temperature setpoint.

 By combining and modeling the dynamics of the zone air and the HVAC control and saturation as a constant

derivative, it is sufficient to use a time step of 0.5 hours to capture the remaining dynamics.

 The simulated HVAC system and the model used within the MPC, employ the same model.

 There is no discrepancy between predicted and actual loads.
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3.3 Modeled Equations 
The non-steady state difference equations comprising the model are shown: 

Tia,i(k+1) = Tsp,i(k +1)  (Note:  (Tsp,i(k +1)-Tsp,i(k)) /∆t will be limited by optimization)          (1) 

Tm,i(k +1) = Tm,i(k) + ∆t ∙ (Tia,i(k)-Tm,i(k)) / (Cm,i ∙ Rmi,i)          (2) 

Q̇m,i(k +1) = (Tia,i(k +1)-Tm,i(k +1)) / Rmi,i          (3) 

Q̇oa,i(k +1) = (Tia,i(k +1)-Toa,i(k +1)) / Roa,i          (4) 

Q̇ia,i(k +1) = Cia,i ∙ (Tia,i(k +1)-Tia,i(k)) / ∆t          (5) 

Q̇hvac,i(k +1) = Q̇ia,i(k +1) + Q̇m,i(k +1) + Q̇oa,i(k +1) - Q̇load,i(k +1)           (6) 

Q̇clg,i(k +1) = -min(0, Q̇hvac,i(k +1))          (7) 

Q̇htg,i(k +1) = +max(0, Q̇hvac,i(k +1))           (8) 

Q̇clg,sum(k +1) = ∑i Q̇clg,i (k+1)           (9) 

Q̇htg,sum(k +1) = ∑i Q̇htg,i (k+1)         (10) 

Whr(k +1) = max(Q̇clg,sum(k+1), Q̇htg,sum(k +1))/COP         (11) 

where: 

∆t – time step (= 0.5 hours).

i – zone index(1,2).

k – discrete time step index.

Tsp,i – temperature set point of zone i.

Q̇m,i – enthalpy into building mass of zone i.

Q̇oa,i – enthalpy lost to outdoor of zone i.

Q̇ia,i – enthalpy into indoor air of zone i.

Q̇hvac – enthalpy provided to the zone via the HVAC to zone i.

Q̇clg,i – cooling provided by the HVAC to zone i (note sign adjust).

Q̇htg,i – heating provided by the HVAC to zone i.

Q̇clg,sum – total cooling provided by the HVAC (note sign adjust). 

Q̇htg,sum – total heating provided by the HVAC. 

Whr – total electrical energy required for a heat recovery VRF system.

3.4 Non-Linear Optimization 
The concept behind economic MPC is to minimize the cost over the entire horizon.  Performing such an optimization 

(or minimization) for the MPC will require a non-linear optimization due to the presence of the min and max functions 

and the constraint on the derivative of Tsp.  This work investigates the impact that MPC can provide to heat recovery 

VRF units.  The economic MPC that minimizes cost over the horizon is formulated as shown: 

C
*
horizon = ∑k Wwithhr(k) * UR(k)        (12) 

Subject to the constraints: 

Tsp,i(k) ≥ Tmin,i(k) 

Tsp,i (k) ≤ Tmax,i (k) 

Tsp,i (k) ≥ Tsp,i(k-1) - ∆max ∙ ∆t 

Tsp,i (k) ≤ Tsp,i(k-1) + ∆max ∙ ∆t 

where: 

Chorizon  - Cost of HVAC over the entire horizon. 

Tmin,i(k) - The minimum allowed zone temperature for zone i at time k. 

Tmax,i(k) - The maximum allowed zone temperature for zone i at time k. 
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∆max - The maximum derivative of zone temperature under HVAC control.  (2 °C/hr).

UR(k) - The rate of the electricity ($/kwh) at time k. 

*
This cost function does not include a demand charge due to the fact that this work relates to residential or 

light commercial HVAC. 

3.3 Simulation 
Baseline and MPC simulations were performed on 52 days selected evenly spaced throughout the year.  Outdoor 

temperature and solar values were gathered from a Typical Meteorological Year (TMY) for Milwaukee, WI.  Internal 

and occupancy loads were derived from previous work by Chinde (2016). 

Baseline temperature set point was set to 23 °C.  The MPC temperature boundaries (Tmin and Tmax) were established 

on both sides of the baseline set point.  During occupied conditions this band was ±1 °C.  During unoccupied 

conditions, the set point band was ±4 °C.  The occupied period ran from 6am to 7pm daily. 

The utility rate was set to the value for Milwaukee utility.  The utility rate was 0.10 $/kwh during off peak conditions 

and rose to 0.30 $/kwh during the peak period of noon to 7pm. 

Model parameters for light commercial Milwaukee building zones of 200 m2 were established from first principles 

and measured data, Chinde (2016): 

 Cm = 4.78 [kwh/C]  (lumped mass thermal capacitance)

 Cia = 0.21 [kwh/C]  (indoor air thermal capacitance)

 Rmi = 0.85 [C/kw]  (indoor air-thermal mass thermal resistance)

 Roi = 3.52 [C/kw]  (indoor air-outdoor air thermal resistance)

The two zones used for this model, were established with different disturbance profiles in order to be able to utilize 

the heat recovery mode of the VRF system.  In general, zone 1 was set up to require more cooling that zone 2.  Zone 

2 was established with a plug profile 1/5th of the normal plug and occupancy profiles of zone 1.  Zone 1 was also 

modeled with a southern exposure, while Zone 2 was modeled with a northern exposure. 

The Matlab function, fmincon was employed to perform the minimizations.  This is a non-linear, bounded, multi-

variate optimization algorithm.  An example of the simulation is shown below in Figure 3.  Each simulation generates 

a baseline cost where the baseline temperature setpoint is maintained, and an MPC cost where the temperature setpoint 

is maintained within a band around the baseline temperature. 

One zone  

As one can see in this figure, the MPC algorithm provides an optimal temperature setpoint for each zone. 
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Figure 3: Typical Single Day Simulation 
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4. RESULTS AND ANALYSIS

Cost and enthalpy data were gathered from each simulation.  The following tables summarize the simulation results. 

Table 1: HVAC Heat Loads (Daily Averages) 

Table 2: HVAC Power Required (Daily Averages) 

Table 3: HVAC Cost 

The results show that the MPC algorithm is capable of reducing HVAC energy by efficiently utilizing the allowed 

temperature band around the desired setpoint.  Additional cost savings are also achieved as the algorithm makes use 

of the building mass to shift HVAC loads from the higher priced times of the day to the lower priced times. 

5. CONCLUSIONS

One can see that the potential savings from applying MPC to VRF systems is significant.  Savings of energy and cost 

can be obtained.  The results are shown to be good for the VRF systems employing heat recovery.  The improvement 

in cost due to MPC is projected to be 25%.  These results will depend on the accuracy of the model and the prediction 

of the disturbances.  It can also be seen that the cost for the heat recovery operation in general is less than the cost for 

non-heat recovery. 
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