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ABSTRACT

Although recent research has suggested model predictive control as a promising solution for minimizing energy costs
of commercial buildings, advanced control systems have not been widely deployed in practice. Large-scale imple-
mentations, including industrial complexes and university campuses, may contain thousands of air handler units each
serving a multiplicity of zones. A single centralized control system for these applications is not desirable. In this
paper, we propose a distributed control system to economically optimize temperature regulation for large-scale com-
mercial building applications. The decomposition strategy considers the complexities of thermal energy storage, zone
interactions, and chiller plant equipment while remaining computationally tractable. One of the primary benefits of the
proposed formulation is that the low-level airside problem can be decoupled and solved in a distributed manner; hence,
it can be easily extended to handle large applications. Peak demand charges, a major source of coupling, are included.
The interactions of the airside system with the waterside system are also considered, including discrete decisions, such
as turning chillers on and off. To deploy such a control scheme, a system model is required. Since using physical
knowledge about building models can greatly reduce the number of parameters that must be identified, grey-box mod-
els are recommended to reduce the length of expensive identification testing. We demonstrate the effectiveness of this
control system architecture and identification procedure via simulation studies.

1. INTRODUCTION

1.1 Motivation

Commercial buildings account for 20% of the total U.S. energy consumption, corresponding to roughly $200 billion a
year in primary energy expenditures (Department of Energy, 2012). The Energy Information Administration projects
that commercial floor space and primary energy consumption will continue to grow between 2009 and 2035, at 28%
and 22%, respectively. Average energy prices, on the other hand, have been, and are expected to remain, relatively
stable; therefore, the amount spent on energy in commercial buildings will continue to increase significantly. Given
the significance of these energy cost values and their projected growth, buildings have become a clear target for control
strategies designed to reduce costs and improve efficiency, particularly in the area of temperature control.

Almost all heating and cooling systems in commercial buildings and educational facilities use on/off and proportional-
integral-derivative (PID) controllers for control of their heating, ventilation, and air conditioning (HVAC) systems
(Afram & Janabi-Sharifi, 2014). These systems rely on controllers whose goal is to converge to the desired temperature
set point. However, a better goal is to minimize the total energy cost. In a utility market with time-varying prices,
the potential exists for cost savings by temporally shifting heating or cooling loads using thermal energy storage. To
achieve these savings, predictive optimization is required using a model of the system for forecasting. Load shifting
decreases the burden on power plants during peak hours, allowing them to operate more efficiently. Furthermore,
chillers can operate more efficiently at night than during the day.
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Figure 1: Schematic of large-scale commercial application with airside system shown on the left and waterside
system shown on the right.

1.2 Model Predictive Control

Model predictive control (MPC) is an advanced control method that has been highly successful over the past two
decades with thousands of applications in the chemical and petroleum industries alone (Qin & Badgwell, 2003). MPC
relies on a model of the system to predict the process variables based on the actions taken by the controller (Rawlings
& Mayne, 2009). At each step, an online optimization problem is solved. In economic MPC, the objective for this
optimization is to minimize total cost (Rawlings & Amrit, 2009). Numerous studies have shown that MPC outperforms
existing control systems due to its ability to forecast into the future and anticipate events before they occur (Ma et al.,
2012; Mendoza-Serrano & Chmielewski, 2012). MPC enables shifting of the energy load from peak hours to off-peak
hours by using the mass of the building for passive thermal energy storage (TES) (Oldewurtel et al., 2010; Avci et al.,
2013). Active TES, e.g., chilled water tanks, can also be used to further facilitate load shifting. Through a combination
of active and passive storage systems, energy costs can be decreased by concentrating equipment usage to times of
low resource prices while maintaining comfort limits within the building.

1.3 Large-Scale Commercial Applications

Economically optimal control systems have not been deployed widely in the HVAC industry. One fundamental ob-
stacle to the successful deployment of MPC is the large number of zones. To implement MPC in HVAC systems,
an optimization problem must be solved in a reasonably short time (on the order of a few minutes). Campus wide
implementations may contain hundreds of buildings and thousands of air handler units each serving tens of zones. A
schematic of such a large-scale application is shown in Figure 1. The airside system consists of all zones and the air-
handler units (AHUs) that are responsible for temperature regulation. The waterside system consists of the equipment,
such as chillers, that are required to provide cooling and/or heating. The control objective is to determine temperature
setpoints for all zones in the airside system and to operate the waterside equipment to meet the corresponding load.
A single, combined control system for these applications is impractical and undesirable as the number of zones and
equipment increases because the resulting single optimization problem is difficult to maintain and also too large to
solve in real time.

Distributed MPC can be implemented so that the large combined problem can be divided into smaller problems, which
can be solved in parallel to reduce the overall computation time (Rawlings & Mayne, 2009; Rawlings & Stewart, 2008).
Iterative methods are typically used in distributed MPC (Scherer et al., 2013; Lamoudi et al., 2011). However, iterative

4th International High Performance Buildings Conference at Purdue, July 11-14, 2016



3236, Page 3

methods with many information exchanges between the distributed controllers are undesirable in practice because the
controllers must wait on other controllers at each iteration, which can result in a greater computational time than that of
solving the combined problem directly. Additionally, there are potential practical limitations to information exchanges
based on existing HVAC communication protocols.

Power companies not only charge customers according to their total energy usage with time varying electricity costs,
but they often also levy a peak demand charge based on the peak power usage during the month. Since peak demand
charges comprise a significant portion of total cooling costs in buildings, excluding these charges leads to suboptimal
performance with respect to minimizing energy costs. Existing distributed methods do not address these peak demand
charges. Coordination is required; otherwise, zone controllers may cool at similar times leading to a high peak power
usage. Furthermore, these existing methods often do not consider active TES or include detailed waterside equipment
models, where significant cost savings can be achieved.

In this paper, we design a distributed economic MPC architecture for building temperature regulation to address these
issues. The formulation is general enough to handle a large class of HVAC systems including interactions between
the airside and waterside systems. The overall single optimization problem is decomposed into smaller subproblems
for large-scale applications. Aggregate models are used in the high-level problem to reduce the computational bur-
den. Iterations and communication between the low-level airside subsystems are not required. Demand response is
addressed for optimal performance in the presence of peak demand charges. Regulatory controller dynamics are mod-
eled to account for the slow closed-loop responses to temperature setpoint changes in commercial buildings.

2. DECOMPOSITION

2.1 Problem Statement

The goal is to develop a solution to the overall problem: given a forecast of electricity prices, ambient conditions, and
disturbance loads, decide how to operate the HVAC system to minimize the total operating cost. The decision vari-
ables include temperature setpoints sent to the zone controllers, chiller operation schedule and storage tank operation
schedule. In making these decisions, comfort bounds on the zone temperatures, capacity constraints on the equipment
(air-handlers, chillers, and storage tank), and switching constraints for chillers must be respected.

Given this problem statement, we can formulate a single overall optimization problem for the combined airside and wa-
terside system. As discussed in Section 1, solving this single optimization problem becomes difficult for large-scale
applications. The airside system can consist of thousands of zones, and the waterside system can contain multiple
pieces of equipment. Inclusion of the discrete decisions (turning equipment on or off) results in a mixed-integer opti-
mization problem, which further increases the problem complexity. Since the single problem cannot be solved in real-
time implementations, a decomposition is required to formulate smaller, manageable optimization problems.

2.2 Control Architecture Design

Our decomposition of the overall problem for HVAC control is shown in Figure 2. The MPC layer sits on top of
the regulatory layer, which consists of the building automation system (BAS) and PID controllers for the airside and
waterside systems. The design is expected to work with any existing BAS, allowing one to retrofit an existing HVAC
control architecture with optimization. Only setpoint and measurement communication between the layers is required.
In addition to a high- and low-level separation for the MPC problem, we split the low-level problem into airside and
waterside following industrial convention.

For large-scale applications with hundreds or thousands of zones, the low-level airside problem can be further de-
composed into separate distributed MPC controllers with each controlling a subsystem of the entire airside system
as shown in Figure 2. The information exchanges between the layers are identical for all of the distributed airside
controllers. The high-level problem contains an aggregate model of each airside subsystem and allocates cooling to
each subsystem. The subsystem MPC controllers contain more detailed zone-level models. The choice of dividing
the airside system into separate subsystems is made for computational reasons so that the subsystem MPC problems
can be solved within a few minutes. Each subsystem can be anything from a single zone to a collection of zones to an
entire building or even multiple buildings. If there is significant coupling between the subsystems (e.g., heat exchange
between zones in separate subsystems), then performance may deteriorate as the controllers do not coordinate their
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Figure 2: Control architecture with distributed MPC on the low-level airside problem (dotted box) for large-
scale applications.

solutions. One way to decompose the airside system to guarantee that there is no coupling between the subsystems is
to decompose by building because buildings do not exchange heat with one another. For this reason, we choose each
subsystem to be a separate building in the discussion that follows.

The high-level problem determines how much cooling to allocate to each building to optimize total operational cost
using an active TES model as well as aggregate airside and waterside models to reduce computational complexity.
Each building has a separate low-level airside controller that computes the zone temperature setpoints that minimize
energy usage, while maintaining the zone temperatures in a prespecified comfort region and not exceeding the cooling
load from the high-level problem. Note that an alternative objective for the low-level airside problem is tracking the
average building temperature from the high-level problem. Based on simulations, there is not a significant difference in
performance between the two objectives, hence both are suitable. The low-level waterside problem is a mixed-integer
linear program that minimizes cost while meeting the load from the high-level problem; its decision variables include
equipment operation, thermal loads for chillers, flows for pumps, setpoints for other auxiliary equipment, and storage
utilization. Previously, heuristics have been used to make these decisions. Risbeck et al. (2015) discuss the details of
the low-level waterside problem. This paper primarily addresses the high-level and low-level airside problems. The
setpoints from the two low-level problems are sent to the regulatory controllers of the existing building automation
system (BAS). Feedback is employed to communicate measurements (temperature, power, equipment state) from the
regulatory layer to the low-level MPC layer. Then, updated aggregate models and disturbance forecasts for both airside
and waterside systems are communicated to the high-level problem for the next MPC execution step.

2.3 Advantages over Alternative Strategies

There are several advantages of this decomposition. The primary sources of coupling (peak demand charge and total
equipment capacity constraint) are handled in the high-level problem, which uses aggregate airside and waterside
models to reduce computational burden. Subsystems in the low-level airside problem are decoupled. Hence, iterations
between the subsystems are not required, greatly reducing the internal communication burden. The general framework
can handle various types of applications: central chiller plants, air handler units (AHUs), roof top units (RTUs),
variable refrigerant flow (VRF) systems, and any BAS that can receive temperature setpoints and send measurements.
Most building temperature regulation methods do not consider detailed models of chiller plant equipment or integer
decision variables, which decreases the fidelity of energy cost calculations. Including integer variables in the waterside
problem allows the optimizer to determine the equipment operation schedule rather than using heuristics. We consider
active TES, where the greatest potential for load shifting and cost savings lies. However, the control architecture can
be applied generally, whether or not active TES is available.
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3. PROBLEM FORMULATIONS

3.1 System Model

The dynamics of cooling a single zone or building are described by the energy balance

C
dT

dt
= −H(T − Ta)− Q̇c + Q̇other (1)

This model lumps all zone mass and air properties into a single zone temperature. Other models can also be used to
describe the airside system dynamics. Differential equations can be written to model the zone air and mass temper-
atures separately, and the mass temperature can be further separated into a shallow mass temperature and deep mass
temperature. However, for simplicity, we considered the lumped model in the simulation studies.

The system model given in Equation (1) can be extended to handle buildings with multiple zones. To this end, the
coupling between the air spaces needs to be included. As energy is transferred due to a temperature gradient, the
coupled model is given by

Ci
dTi
dt

= −Hi(Ti − Ta)−
∑
j 6=i

βij(Ti − Tj)− Q̇c,i + Q̇other,i (2)

in which βij characterizes the degree of coupling between zones i and j. If zones i and j are not adjacent, then
βij = 0. Since buildings are separate and do not directly exchange energy, β = 0 in the high-level problem. Active
TES is modeled using first order linear dynamics

ds

dt
= −σs+ Q̇storage (3)

For convenience, we convert all models to state-space form for use in the MPC optimization problem. Equation (2)
is combined with Equation (3) and discretized according to the sample time of the controller to yield a discrete-time
state-space model for the high-level problem. Similarly, using Equation (2) and the cooling duty model, which is
discussed later, a discrete-time state-space model is obtained for the low-level airside problem.

3.2 High-Level Optimization Problem

As shown in Figure 2, the data for the high-level problem includes electricity pricing, weather forecast, building use
model, and disturbance estimates from low-level problem. Since most pricing structures include a peak demand charge
based on the peak power usage during the month in addition to the time varying electricity costs, both components
are included in the economic cost objective. The decision variables are building temperatures, storage utilization, and
thermal loads for waterside system. Dynamics models for the building temperature and active TES are required. The
aggregate waterside system model is represented by the coefficient of performance (COP) in the high-level objec-
tive. Constraints include comfort bounds on the air temperature and bounds on the cooling duty. The comfort zone
constraints are implemented as soft constraints. Mathematically, the high-level MPC problem is formulated as

min
x,u,Q̇peak

N−1∑
k=0

ckηQ̇HVAC,k∆ + cpeakηQ̇peak

s.t. Cb
dTb
dt

= −Hb(Tb − Ta)− Q̇c,b + Q̇other,b

ds

dt
= −σs+ Q̇storage

Q̇HVAC,k =
∑
b

Q̇c,b,k + Q̇storage,k

0 ≤ Q̇HVAC,k ≤ Q̇peak

Q̇peak,past ≤ Q̇peak ≤ Q̇HVAC,max

0 ≤ sk ≤ smax

Tmin ≤ Tb ≤ Tmax

(4)
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The states in the high-level MPC problem are the building temperatures and storage tank level. The inputs are the
cooling duties to each building and the amount of storage charged or discharged. A rate of change penalty can be
added to the inputs in the MPC problem. The disturbances are the ambient temperature and external loads placed on
each building. A forecast of this disturbance vector is obtained and provided to the optimization problem at each MPC
step. In the simulation study, the states are assumed to be measured. In real applications, state estimation is required
to reconstruct the states from the measurements. To obtain building models from the zone models that are typically
available or identified, model aggregation is employed. The average building temperature is defined by summing over
all zones in that building using

Tb =

∑
i CiTi∑
i Ci

(5)

With this definition, the building parameters for the high-level airside model are obtained by summing parameters
from the low-level airside models using

Cb =
∑
i

Ci Hb =
∑
i

Hi Q̇other,b =
∑
i

Q̇other,i (6)

Model aggregation also helps to reduce the amount of information that needs to be exchanged, thus, addressing the
potential practical limitations with existing HVAC communication protocols.

3.3 Low-Level Airside Optimization Problem

As shown in Figure 2, the data for the low-level airside problem includes the cooling duty allocated from the high-level
problem. Its objective is to minimize energy usage over the horizon by varying zone temperature setpoints. The zone
air temperature and temperature setpoint to cooling duty model is required (Q̇c,i = f(Ti, Tsp,i)), which is discussed in
the following section. The constraints include comfort bounds on the zone air temperatures and bounds on the cooling
duty obtained from the high-level problem; they are all implemented as soft constraints with comfort zone violations
penalized more than high-level cooling duty violations.

In each building, the low-level airside MPC problem is formulated as

min
x,u

Qtotal,N

s.t. Ci
dTi
dt

= −Hi(Ti − Ta)−
∑
j 6=i

βij(Ti − Tj)− Q̇c,i + Q̇other,i

dQtotal

dt
=
∑
i

Q̇c,i

Tmin ≤ Ti ≤ Tmax

Qtotal,k+1 −Qtotal,k

∆
≤ Q̇HighLevel,k

Qtotal,k+1 −Qtotal,k ≥ 0

Q̇c,i = f(Ti, Tsp,i)

(7)

To obtain the cooling duty as a function of the temperature setpoint and temperature, two separate models are re-
quired:

1). A model of the regulatory zone temperature controller to determine its control action in the air handler unit
(AHU) as a function of the zone temperature and temperature setpoint: vair,i = f1(Ti, Tsp,i)

2). An energy balance relating the control action to the actual cooling duty: Q̇c,i = f2(vair,i)

Assuming an ideal proportional-integral (PI) controller and a linear relationship between Q̇c,i and vair,i, the simplified
linear cooling duty controller model is

Q̇c,i = Q̇ss,i +Kc,i

[
εi +

1

τI,i

∫ t

0

εi(t
′)dt′

]
εi = Tsp,i − Ti

(8)
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Figure 3: Ambient Temperature and Power Cost.
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Figure 4: High-Level Optimization Result.

Saturation is represented as constraints on Q̇c,i. If a linear model is not sufficiently accurate to model the PI controller
and heat transfer in air handler units, a nonlinear cooling duty model can be used instead. In this case, (7) becomes
a nonlinear optimization problem. While it may seem atypical to model the regulatory controllers in the MPC opti-
mization problem, the dynamics of zone PI controllers cannot be ignored as their responses are sluggish. In building
temperature regulation, it may take zones up to an hour to reach a new temperature setpoint, which does not permit a
time-scale separation in the decomposition. Since electricity prices are time-varying, ignoring these dynamics leads
to suboptimal operation.

For the low-level airside problem, the states are the zone temperatures, the integrals of the zone tracking errors, and
the total amount of cooling delivered. The inputs are the zone temperature setpoints. A rate of change penalty can
be added to these inputs as well in the MPC problem to discourage rapid setpoint changes. The disturbances are the
ambient temperature, external loads, and steady-state cooling rates.

3.4 Alternative Formulation: Temperature Tracking

An alternative strategy for the low-level airside problem is to track the average building temperature from the high-
level problem rather than to minimize energy consumption. To track the temperature computed from the high-level
problem, the high-level cooling duty constraint from (7) is removed, and the objective is replaced with

N∑
k=1

1

2
‖Tb,k − THighLevel,k‖2 + µQtotal,N (9)

in which the average building temperature is defined by Equation (5) and µ is a small penalty placed on energy usage.
This penalty on energy usage ensures uniqueness of the solution.

4. SIMULATION RESULTS

A simulation study was performed for a three-zone building with active TES. The weather and electricity pricing data
used in the simulation are shown in Figure 3. The weather data were obtained from Atlanta, Georgia for a three-
day period in the summer (July 25-27, 2012). The time-varying electricity price and peak demand charge data are
representative of data from Johnson Controls. Figure 4 shows the results of the high-level optimization problem,
and Figure 5 shows the results of the low-level optimization airside problem. The top graph in each figure shows
the temperatures with the comfort zone denoted by dotted lines. The bottom graph in each figure shows the inputs
computed from the corresponding optimizations. With passive TES available, the economically optimal strategy is to
precool the building before the peak period when electricity prices are highest. The flatness of the cooling duty profile
from the high-level problem is a result of the peak demand charge. The low-level airside problem determines the order
of precooling based on the dynamics of the individual zones in the building to minimize energy usage. Since Zone 2
is not as well insulated as Zone 3, the low-level airside controller chooses to precool Zone 3 before the Zone 2.
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Figure 5: Low-Level Airside Optimization Result.
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Figure 6 shows the results of the low-level waterside optimization problem. The top graph shows how the demand
profile from the high-level problem is met using a combination of production from chillers and charging/discharging
of the storage tank. The bottom graph shows the corresponding equipment operation schedule for the two chillers.
The shaded region depicts when the equipment is turned on with the approximate loading fraction between 0 and 1
depicted by the solid line. With active TES available, chillers produce more chilled water during the night to charge
the storage tank so that they can be turned off during the peak period when electricity is more expensive.

The concept can be extended to larger systems with more buildings and more zones. This decomposition strategy has
also been applied to a campus with 25 buildings, each with 20 zones (for a total of 500 zones). The resulting optimiza-
tion problems at each MPC step can be solved within a few minutes when distributed controllers are implemented for
the low-level airside problem; however, the results are not shown due to space limitations.

5. AIRSIDE SYSTEM IDENTIFICATION

To implement this control system, an airside model is required. A few issues must be considered in the building
problem that are not present in typical chemical process control applications. During testing, exciting inputs using
large pseudo-random, binary signals (PRBS) can result in frequent saturation of the PID controllers in air handler
units, hence small PRBS or integrated PRBS are used instead. Moreover, one of the primary disturbances affecting
buildings, ambient temperature, can be easily measured and predicted. In order to use weather forecasts during online
optimization, the effect of ambient temperature on zone temperature dynamics is identified by adding ambient temper-
ature to the input vector before passing the data to the identification routine. The model between other disturbances,
such as solar radiation, and the zone temperature can also be identified if measurements and predictions of these distur-
bances are available. Furthermore, temperatures must be kept in the comfort zone if the building has occupants during
testing period. Sample identification results are presented in the next section that account for these issues.

5.1 Black-Box and Grey-Box Identification

In a linear black-box model, no knowledge about the internal structure of the system is assumed. While these tech-
niques can be applied to any system using some knowledge of the system to add structure to the model can greatly
increase the accuracy of the identified model, while decreasing data requirements. Models with this added structure
are called grey-box models. To determine whether black-box and grey-box identification perform equally well for
the building problem, both types of identification were performed on the same dataset using MATLAB’s System Iden-
tification Toolbox. The free parameters in the grey-box approach include the thermal capacitances of the zones and
heat transfer coefficients from Equation (2) as well as the PI controller parameters from Equation (8). The results are
shown in Figure 7. Based on the figure, both methods fit the validation data well. However, the two methods do not
scale equivalently for large-scale systems.
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5.2 Scaling Analysis

Figure 8 shows how the number of free parameters to be identified from data increases as the number of zones in-
creases. The figure shows the worst case scenario for grey-box identification when all heat transfer coefficients be-
tween zones need to be determined. Typically, many of these coupling coefficients can be set to zero if zones are not
adjacent, which leads to a more linear scaling for the grey-box case. As large-scale commercial building applications
may have thousands of zones, identifying black-box models for these systems involves determining many parameters.
More data is required when there are more free parameters to identify. Hence, grey-box identification requires less
data than black-box identification. In practice, less data means a shorter testing period and faster implementation of the
MPC controller, which makes grey-box identification more suitable for large-scale commercial applications.

6. CONCLUSIONS

An economically optimal and practically implementable method of temperature regulation and equipment operation
for large-scale commercial building applications was presented. The control system architecture considers both airside
and waterside optimization as well as storage, and the architecture can be easily extended to handle more complex
models. Since the time scale of regulatory controllers is significant, their dynamics are modeled. Grey-box system
identification is preferred over black-box identification for large systems to decrease the testing period. We show the
effectiveness of the proposed method through the simulation of a three-zone building.

NOMENCLATURE

Indices
b building index (high-level)
i zone index (low-level)
k time index
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Variables
T temperature
Ta ambient temperature
Tsp,i zone temperature setpoint
Q̇other external load, radiation, or disturbance
Q̇c cooling rate delivered
Qtotal total amount of cooling delivered
Q̇HVAC cooling rate from HVAC system
Q̇peak peak HVAC system cooling rate
s amount of cooling potential in storage tank
Q̇storage cooling rate delivered to storage tank
Q̇HighLevel cooling rate from high-level problem
THighLevel building temperature from high-level
εi tracking error
vair,i air flow rate in AHU

Parameters
∆ sample time of controller
N horizon length
ck cost of electricity at time k
cpeak peak demand charge
C thermal capacitance
H scaled ambient heat transfer coefficient
βij scaled inter-zone heat transfer coefficient
Kc,i scaled zone PI controller gain
τI,i integral time constant for zone PI controller
Q̇ss,i steady-state rate of cooling
η inverse of the aggregate COP
Q̇HVAC,max max cooling capacity of HVAC system
Q̇peak,past peak cooling rate previously achieved
σ decay constant for storage tank
smax max cooling capacity of storage tank
Tmin lower bound of comfort region
Tmax upper bound of comfort region
µ penalty on energy usage
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Lamoudi, M. Y., Alamir, M., & Béguery, P. (2011). Distributed constrained model predictive control based on bundle
method for building energy management. In 50th IEEE Conference on Decision and Control and European
Control Conference (pp. 8118–8124). Orlando, FL, USA.

Ma, J., Qin, J., Salsbury, T., & Xu, P. (2012). Demand reduction in building energy systems based on economic model
predictive control. Chemical Engineering Science, 67, 92–100.

Mendoza-Serrano, D. I., & Chmielewski, D. J. (2012). HVAC control using infinite-horizon economic MPC. In 51st
IEEE Conference on Decision and Control (pp. 6963–6968). Maui, Hawaii, USA.

Oldewurtel, F., Parisio, A., Jones, C. N., Morari, M., Gyalistras, D., Gwerder, M., . . . Wirth, K. (2010). Energy
efficient building climate control using stochastic model predictive control and weather predictions. In American
Control Conference (pp. 5100–5105). Baltimore, MD, USA.

Qin, S. J., & Badgwell, T. A. (2003). A survey of industrial model predictive control technology. Control Engineering
Practice, 11(7), 733-764.

Rawlings, J. B., & Amrit, R. (2009). Optimizing process economic performance using model predictive control. In
Nonlinear Model Predictive Control (Vol. 384, pp. 119–138). Berlin: Springer.

Rawlings, J. B., & Mayne, D. Q. (2009). Model Predictive Control: Theory and Design. Madison, WI: Nob Hill
Publishing.

Rawlings, J. B., & Stewart, B. T. (2008). Coordinating multiple optimization-based controllers: New opportunities
and challenges. Journal of Process Control, 18, 839-845.

Risbeck, M. J., Maravelias, C. T., Rawlings, J. B., & Turney, R. D. (2015). Cost optimization of combined building
heating/cooling equipment via mixed-integer linear programming. In American Control Conference (p. 1689-
1694). Chicago, IL.
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