2,051 research outputs found
Propositional computability logic I
In the same sense as classical logic is a formal theory of truth, the
recently initiated approach called computability logic is a formal theory of
computability. It understands (interactive) computational problems as games
played by a machine against the environment, their computability as existence
of a machine that always wins the game, logical operators as operations on
computational problems, and validity of a logical formula as being a scheme of
"always computable" problems. The present contribution gives a detailed
exposition of a soundness and completeness proof for an axiomatization of one
of the most basic fragments of computability logic. The logical vocabulary of
this fragment contains operators for the so called parallel and choice
operations, and its atoms represent elementary problems, i.e. predicates in the
standard sense. This article is self-contained as it explains all relevant
concepts. While not technically necessary, however, familiarity with the
foundational paper "Introduction to computability logic" [Annals of Pure and
Applied Logic 123 (2003), pp.1-99] would greatly help the reader in
understanding the philosophy, underlying motivations, potential and utility of
computability logic, -- the context that determines the value of the present
results. Online introduction to the subject is available at
http://www.cis.upenn.edu/~giorgi/cl.html and
http://www.csc.villanova.edu/~japaridz/CL/gsoll.html .Comment: To appear in ACM Transactions on Computational Logi
Multiple Particle Interference and Quantum Error Correction
The concept of multiple particle interference is discussed, using insights
provided by the classical theory of error correcting codes. This leads to a
discussion of error correction in a quantum communication channel or a quantum
computer. Methods of error correction in the quantum regime are presented, and
their limitations assessed. A quantum channel can recover from arbitrary
decoherence of x qubits if K bits of quantum information are encoded using n
quantum bits, where K/n can be greater than 1-2 H(2x/n), but must be less than
1 - 2 H(x/n). This implies exponential reduction of decoherence with only a
polynomial increase in the computing resources required. Therefore quantum
computation can be made free of errors in the presence of physically realistic
levels of decoherence. The methods also allow isolation of quantum
communication from noise and evesdropping (quantum privacy amplification).Comment: Submitted to Proc. Roy. Soc. Lond. A. in November 1995, accepted May
1996. 39 pages, 6 figures. This is now the final version. The changes are
some added references, changed final figure, and a more precise use of the
word `decoherence'. I would like to propose the word `defection' for a
general unknown error of a single qubit (rotation and/or entanglement). It is
useful because it captures the nature of the error process, and has a verb
form `to defect'. Random unitary changes (rotations) of a qubit are caused by
defects in the quantum computer; to entangle randomly with the environment is
to form a treacherous alliance with an enemy of successful quantu
Turing's three philosophical lessons and the philosophy of information
In this article, I outline the three main philosophical lessons that we may learn from Turing's work, and how they lead to a new philosophy of information. After a brief introduction, I discuss his work on the method of levels of abstraction (LoA), and his insistence that questions could be meaningfully asked only by specifying the correct LoA. I then look at his second lesson, about the sort of philosophical questions that seem to be most pressing today. Finally, I focus on the third lesson, concerning the new philosophical anthropology that owes so much to Turing's work. I then show how the lessons are learned by the philosophy of information. In the conclusion, I draw a general synthesis of the points made, in view of the development of the philosophy of information itself as a continuation of Turing's work. This journal is © 2012 The Royal Society.Peer reviewe
An evolutionary model with Turing machines
The development of a large non-coding fraction in eukaryotic DNA and the
phenomenon of the code-bloat in the field of evolutionary computations show a
striking similarity. This seems to suggest that (in the presence of mechanisms
of code growth) the evolution of a complex code can't be attained without
maintaining a large inactive fraction. To test this hypothesis we performed
computer simulations of an evolutionary toy model for Turing machines, studying
the relations among fitness and coding/non-coding ratio while varying mutation
and code growth rates. The results suggest that, in our model, having a large
reservoir of non-coding states constitutes a great (long term) evolutionary
advantage.Comment: 16 pages, 7 figure
Diffusion-induced spontaneous pattern formation on gelation surfaces
Although the pattern formation on polymer gels has been considered as a
result of the mechanical instability due to the volume phase transition, we
found a macroscopic surface pattern formation not caused by the mechanical
instability. It develops on gelation surfaces, and we consider the
reaction-diffusion dynamics mainly induces a surface instability during
polymerization. Random and straight stripe patterns were observed, depending on
gelation conditions. We found the scaling relation between the characteristic
wavelength and the gelation time. This scaling is consistent with the
reaction-diffusion dynamics and would be a first step to reveal the gelation
pattern formation dynamics.Comment: 7 pages, 4 figure
Learning, Social Intelligence and the Turing Test - why an "out-of-the-box" Turing Machine will not pass the Turing Test
The Turing Test (TT) checks for human intelligence, rather than any putative
general intelligence. It involves repeated interaction requiring learning in
the form of adaption to the human conversation partner. It is a macro-level
post-hoc test in contrast to the definition of a Turing Machine (TM), which is
a prior micro-level definition. This raises the question of whether learning is
just another computational process, i.e. can be implemented as a TM. Here we
argue that learning or adaption is fundamentally different from computation,
though it does involve processes that can be seen as computations. To
illustrate this difference we compare (a) designing a TM and (b) learning a TM,
defining them for the purpose of the argument. We show that there is a
well-defined sequence of problems which are not effectively designable but are
learnable, in the form of the bounded halting problem. Some characteristics of
human intelligence are reviewed including it's: interactive nature, learning
abilities, imitative tendencies, linguistic ability and context-dependency. A
story that explains some of these is the Social Intelligence Hypothesis. If
this is broadly correct, this points to the necessity of a considerable period
of acculturation (social learning in context) if an artificial intelligence is
to pass the TT. Whilst it is always possible to 'compile' the results of
learning into a TM, this would not be a designed TM and would not be able to
continually adapt (pass future TTs). We conclude three things, namely that: a
purely "designed" TM will never pass the TT; that there is no such thing as a
general intelligence since it necessary involves learning; and that
learning/adaption and computation should be clearly distinguished.Comment: 10 pages, invited talk at Turing Centenary Conference CiE 2012,
special session on "The Turing Test and Thinking Machines
Diversity, Stability, Recursivity, and Rule Generation in Biological System: Intra-inter Dynamics Approach
Basic problems for the construction of a scenario for the Life are discussed.
To study the problems in terms of dynamical systems theory, a scheme of
intra-inter dynamics is presented. It consists of internal dynamics of a unit,
interaction among the units, and the dynamics to change the dynamics itself,
for example by replication (and death) of units according to their internal
states. Applying the dynamics to cell differentiation, isologous
diversification theory is proposed. According to it, orbital instability leads
to diversified cell behaviors first. At the next stage, several cell types are
formed, first triggered by clustering of oscillations, and then as attracting
states of internal dynamics stabilized by the cell-to-cell interaction. At the
third stage, the differentiation is determined as a recursive state by cell
division. At the last stage, hierarchical differentiation proceeds, with the
emergence of stochastic rule for the differentiation to sub-groups, where
regulation of the probability for the differentiation provides the diversity
and stability of cell society. Relevance of the theory to cell biology is
discussed.Comment: 19 pages, Int.J. Mod. Phes. B (in press
Finding the center reliably: robust patterns of developmental gene expression
We investigate a mechanism for the robust identification of the center of a
developing biological system. We assume the existence of two morphogen
gradients, an activator emanating from the anterior, and a co-repressor from
the posterior. The co-repressor inhibits the action of the activator in
switching on target genes. We apply this system to Drosophila embryos, where we
predict the existence of a hitherto undetected posterior co-repressor. Using
mathematical modelling, we show that a symmetric activator-co-repressor model
can quantitatively explain the precise mid-embryo expression boundary of the
hunchback gene, and the scaling of this pattern with embryo size.Comment: 4 pages, 3 figure
Dynamics of Turing patterns under spatio-temporal forcing
We study, both theoretically and experimentally, the dynamical response of
Turing patterns to a spatio-temporal forcing in the form of a travelling wave
modulation of a control parameter. We show that from strictly spatial
resonance, it is possible to induce new, generic dynamical behaviors, including
temporally-modulated travelling waves and localized travelling soliton-like
solutions. The latter make contact with the soliton solutions of P. Coullet
Phys. Rev. Lett. {\bf 56}, 724 (1986) and provide a general framework which
includes them. The stability diagram for the different propagating modes in the
Lengyel-Epstein model is determined numerically. Direct observations of the
predicted solutions in experiments carried out with light modulations in the
photosensitive CDIMA reaction are also reported.Comment: 6 pages, 5 figure
Pattern Formation Induced by Time-Dependent Advection
We study pattern-forming instabilities in reaction-advection-diffusion
systems. We develop an approach based on Lyapunov-Bloch exponents to figure out
the impact of a spatially periodic mixing flow on the stability of a spatially
homogeneous state. We deal with the flows periodic in space that may have
arbitrary time dependence. We propose a discrete in time model, where reaction,
advection, and diffusion act as successive operators, and show that a mixing
advection can lead to a pattern-forming instability in a two-component system
where only one of the species is advected. Physically, this can be explained as
crossing a threshold of Turing instability due to effective increase of one of
the diffusion constants
- …
