In the same sense as classical logic is a formal theory of truth, the
recently initiated approach called computability logic is a formal theory of
computability. It understands (interactive) computational problems as games
played by a machine against the environment, their computability as existence
of a machine that always wins the game, logical operators as operations on
computational problems, and validity of a logical formula as being a scheme of
"always computable" problems. The present contribution gives a detailed
exposition of a soundness and completeness proof for an axiomatization of one
of the most basic fragments of computability logic. The logical vocabulary of
this fragment contains operators for the so called parallel and choice
operations, and its atoms represent elementary problems, i.e. predicates in the
standard sense. This article is self-contained as it explains all relevant
concepts. While not technically necessary, however, familiarity with the
foundational paper "Introduction to computability logic" [Annals of Pure and
Applied Logic 123 (2003), pp.1-99] would greatly help the reader in
understanding the philosophy, underlying motivations, potential and utility of
computability logic, -- the context that determines the value of the present
results. Online introduction to the subject is available at
http://www.cis.upenn.edu/~giorgi/cl.html and
http://www.csc.villanova.edu/~japaridz/CL/gsoll.html .Comment: To appear in ACM Transactions on Computational Logi