7 research outputs found

    Spatially integrated speckle intensity: maximum resistance to decorrelation caused by in-plane target displacement

    Get PDF
    Laser speckle produced from a diffuse object can be used in determining the angular position of a rotating object. When the object rotates the backscattered speckle pattern, which changes continuously but repeats exactly with every revolution, is sampled by a suitably positioned photodetector. The photodetector output signal is periodic, and one period is stored in the memory as a reference. Shaft position can then be determined by the comparison of this stored reference signal with the current photodetector output signal. When the shaft is axially displaced, for example, by vibration, the backscattered speckle pattern changes on the photodetector and the similarity between the reference signal and the current signal is reduced. We examine the cross correlation of the real-time photodetector output signal and the stored reference signal as a function of axial shaft position. Use of a rotating shaft when collecting data is shown to be an efficient means by which to make effectively several thousand independent estimates of the maximum axial displacement tolerable before decorrelation of the photodetector output. Theoretical results and experiments conducted show that the decorrelation displacement varies, according to optical configuration, to a maximum value of 0.7 of the beam diameter. This has important implications for a proposed laser torquemeter as well as additional applications in which changes to the sampled speckle pattern, including decorrelation, are either desirable or undesirable

    Assessment of EGFR/HER2 dimerization by FRET-FLIM utilizing Alexa-conjugated secondary antibodies in relation to targeted therapies in cancers

    Get PDF
    The expression level of the HER family is unreliable as a predictive marker for targeted therapies in cancer. Thus, there is a need to develop other biomarkers, which can be used to accurately select responsive patients for targeted therapies. The HER dimerization status may be more important than HER receptor expression per se in determining sensitivity or resistance to a given therapeutic agent. The aim of the study is to develop a FRET assay using dye conjugated secondary antibodies to assess HER receptor dimerization. Using primary antibodies from different species in conjunction with Alexa488 and Alexa546 conjugated secondary antibodies, we validated our EGFR/HER2 dimerization assay in three cell lines, EGFR positive A431 cells as well as HER2 positive breast cell lines BT474 and SKBR3 cells. Finally, we applied our assay to assess EGFR/HER2 dimerization in paraffin embedded cell pellets. Our results show promise for the assay to be applied to tumor samples in order to assess the prognostic significance and predictive value of HER receptor dimerization in various cancers

    HER2-HER3 heterodimer quantification by FRET-FILM and patient subclass analysis of the COIN colorectal trial

    Get PDF
    BACKGROUND: The phase 3 MRC COIN trial showed no statistically significant benefit from adding the EGFR-target cetuximab to oxaliplatin-based chemotherapy in first-line treatment of advanced colorectal cancer. This study exploits additional information on HER2-HER3 dimerization to achieve patient stratification and reveal previously hidden subgroups of patients who had differing disease progression and treatment response. METHODS: HER2-HER3 dimerization was quantified by 'FLIM Histology' in primary tumor samples from 550 COIN trial patients receiving oxaliplatin and fluoropyrimidine chemotherapy +/-cetuximab. Bayesian latent class analysis (LCA) and covariate reduction was performed to analyze the effects of HER2-HER3 dimer, RAS mutation and cetuximab on progression-free survival (PFS) and overall survival (OS). All statistical tests were two-sided. RESULTS: LCA on a cohort of 398 patients revealed two patient subclasses with differing prognoses (median OS: 1624 days [95%CI=1466-1816] vs 461 [95%CI=431-504]): Class 1 (15.6%) showed a benefit from cetuximab in OS (HR = 0.43 [95%CI=0.25-0.76]; p = 0.004). Class 2 showed an association of increased HER2-HER3 with better OS (HR = 0.64 [95%CI=0.44-0.94]; p = 0.02). A class prediction signature was formed and tested on an independent validation cohort (N = 152) validating the prognostic utility of the dimer assay. Similar subclasses were also discovered in full trial dataset (N = 1,630) based on 10 baseline clinicopathological and genetic covariates. CONCLUSIONS: Our work suggests that the combined use of HER dimer imaging and conventional mutation analyses will be able to identify a small subclass of patients (>10%) who will have better prognosis following chemotherapy. A larger prospective cohort will be required to confirm its utility in predicting the outcome of anti-EGFR treatment

    Tumour irradiation combined with vascular-targeted photodynamic therapy enhances antitumour effects in pre-clinical prostate cancer

    No full text
    BACKGROUND: There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient ‘vascular normalisation’. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. METHODS: We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. RESULTS: FRT induced ‘vascular normalisation’ changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. CONCLUSION: Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials
    corecore