10 research outputs found
TagSNP transferability and relative loss of variability prediction from HapMap to an admixed population
<p>Abstract</p> <p>Background</p> <p>The application of a subset of single nucleotide polymorphisms, the tagSNPs, can be useful in capturing untyped SNPs information in a genomic region. TagSNP transferability from the HapMap dataset to admixed populations is of uncertain value due population structure, admixture, drift and recombination effects. In this work an empirical dataset from a Brazilian admixed sample was evaluated against the HapMap population to measure tagSNP transferability and the relative loss of variability prediction.</p> <p>Methods</p> <p>The transferability study was carried out using SNPs dispersed over four genomic regions: the PTPN22, HMGCR, VDR and CETP genes. Variability coverage and the prediction accuracy for tagSNPs in the selected genomic regions of HapMap phase II were computed using a prediction accuracy algorithm. Transferability of tagSNPs and relative loss of prediction were evaluated according to the difference between the Brazilian sample and the pooled and single HapMap population estimates.</p> <p>Results</p> <p>Each population presented different levels of prediction per gene. On average, the Brazilian (BRA) sample displayed a lower power of prediction when compared to HapMap and the pooled sample. There was a relative loss of prediction for BRA when using single HapMap populations, but a pooled HapMap dataset generated minor loss of variability prediction and lower standard deviations, except at the VDR locus at which loss was minor using CEU tagSNPs.</p> <p>Conclusion</p> <p>Studies that involve tagSNP selection for an admixed population should not be generally correlated with any specific HapMap population and can be better represented with a pooled dataset in most cases.</p
Polymorphism analysis of the CTLA-4 gene in paracoccidioidomycosis patients
The CTLA-4 protein is expressed in activated T cells and plays an essential role in the immune response through its regulatory effect on T cell activation. Polymorphisms of the CTLA-4 gene have been correlated with autoimmune, neoplastic and infectious illnesses. This work aimed to verify possible associations between single nucleotide polymorphisms (SNPs) in CTLA-4, -318C/T in the promoter and +49A/G in exon 1 and paracoccidioidomycosis (PCM) caused by Paracoccidioides brasiliensis. For this purpose, 66 chronic form PCM patients and 76 healthy controls had their allele, genotype and haplotype frequencies determined. The genetic admixture structure of the patients and controls was evaluated to eliminate ancestral bias. The comparison of frequencies indicated no significant differences between patients and controls that could link the SNPs to PCM. Groups were admixture matched with no difference observed in population ancestry inference, indicating that the absence of association between CTLA-4 polymorphisms and PCM could not be attributed to ancestral bias. This study showed that there was no association between the CTLA-4 SNPs -318 and +49 and the resistance or susceptibility to PCM.22022
Population analysis of vitamin D receptor polymorphisms and the role of genetic ancestry in an admixed population
The vitamin D receptor (VDR) is an essential protein related to bone metabolism. Some VDR alleles are differentially distributed among ethnic populations and display variable patterns of linkage disequilibrium (LD). In this study, 200 unrelated Brazilians were genotyped using 21 VDR single nucleotide polymorphisms (SNPs) and 28 ancestry informative markers. The patterns of LD and haplotype distribution were compared among Brazilian and the HapMap populations of African (YRI), European (CEU) and Asian (JPT+CHB) origins. Conditional regression and haplotype-specific analysis were performed using estimates of individual genetic ancestry in Brazilians as a quantitative trait. Similar patterns of LD were observed in the 5′ and 3′ gene regions. However, the frequency distribution of haplotype blocks varied among populations. Conditional regression analysis identified haplotypes associated with European and Amerindian ancestry, but not with the proportion of African ancestry. Individual ancestry estimates were associated with VDR haplotypes. These findings reinforce the need to correct for population stratification when performing genetic association studies in admixed populations
Polymorphism analysis of the CTLA-4 gene in paracoccidioidomycosis patients
The CTLA-4 protein is expressed in activated T cells and plays an essential role in the immune response through its regulatory effect on T cell activation. Polymorphisms of the CTLA-4 gene have been correlated with autoimmune, neoplastic and infectious illnesses. This work aimed to verify possible associations between single nucleotide polymorphisms (SNPs) in CTLA-4, -318C/T in the promoter and +49A/G in exon 1 and paracoccidioidomycosis (PCM) caused by Paracoccidioides brasiliensis. For this purpose, 66 chronic form PCM patients and 76 healthy controls had their allele, genotype and haplotype frequencies determined. The genetic admixture structure of the patients and controls was evaluated to eliminate ancestral bias. The comparison of frequencies indicated no significant differences between patients and controls that could link the SNPs to PCM. Groups were admixture matched with no difference observed in population ancestry inference, indicating that the absence of association between CTLA-4 polymorphisms and PCM could not be attributed to ancestral bias. This study showed that there was no association between the CTLA-4 SNPs -318 and +49 and the resistance or susceptibility to PCM
Population Analysis of Pharmacogenetic Polymorphisms Related to Acute Lymphoblastic Leukemia Drug Treatment
This study aimed to evaluate in the Brazilian population, the genotypes and population frequencies of pharmacogenetic polymorphisms involved in the response to drugs used in treatment of acute lymphoblastic leukemia (ALL), and to compare the data with data from the HapMap populations. There was significant differentiation between most population pairs, but few associations between genetic ancestry and SNPs in the Brazilian population were observed. AMOVA analysis comparing the Brazilian population to all other populations retrieved from HapMap pointed to a genetic proximity with the European population. These associations point to preclusion of the use of genetic ancestry as a proxy for predicting drug response. In this way, any study aiming to correlate genotype with drug response in the Brazilian population should be based on pharmacogenetic SNP genotypes
Genetic Heterogeneity of Self-Reported Ancestry Groups in an Admixed Brazilian Population
ABSTRACT Background: Population stratification is the main source of spurious results and poor reproducibility in genetic association findings. Population heterogeneity can be controlled for by grouping individuals in ethnic clusters; however, in admixed populations, there is evidence that such proxies do not provide efficient stratification control. The aim of this study was to evaluate the relation of self-reported with genetic ancestry and the statistical risk of grouping an admixed sample based on self-reported ancestry. Methods: A questionnaire that included an item on self-reported ancestry was completed by 189 female volunteers from an admixed Brazilian population. Individual genetic ancestry was then determined by genotyping ancestry informative markers. Results: Self-reported ancestry was classified as white, intermediate, and black. The mean difference among selfreported groups was significant for European and African, but not Amerindian, genetic ancestry. Pairwise fixation index analysis revealed a significant difference among groups. However, the increase in the chance of type 1 error was estimated to be 14%. Conclusions: Self-reporting of ancestry was not an appropriate methodology to cluster groups in a Brazilian population, due to high variance at the individual level. Ancestry informative markers are more useful for quantitative measurement of biological ancestry
Recommended from our members
Phenotypic and mutational spectrum of ROR2-related Robinow syndrome.
Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome