1,327 research outputs found
Fluorescent and photo-oxidizing TimeSTAMP tags track protein fates in light and electron microscopy.
Protein synthesis is highly regulated throughout nervous system development, plasticity and regeneration. However, tracking the distributions of specific new protein species has not been possible in living neurons or at the ultrastructural level. Previously we created TimeSTAMP epitope tags, drug-controlled tags for immunohistochemical detection of specific new proteins synthesized at defined times. Here we extend TimeSTAMP to label new protein copies by fluorescence or photo-oxidation. Live microscopy of a fluorescent TimeSTAMP tag reveals that copies of the synaptic protein PSD95 are synthesized in response to local activation of growth factor and neurotransmitter receptors, and preferentially localize to stimulated synapses in rat neurons. Electron microscopy of a photo-oxidizing TimeSTAMP tag reveals new PSD95 at developing dendritic structures of immature neurons and at synapses in differentiated neurons. These results demonstrate the versatility of the TimeSTAMP approach for visualizing newly synthesized proteins in neurons
Enhancing single-molecule photostability by optical feedback from quantum-jump detection
We report an optical technique that yields an enhancement of single-molecule
photostability, by greatly suppressing photobleaching pathways which involve
photoexcitation from the triplet state. This is accomplished by dynamically
switching off the excitation laser when a quantum-jump of the molecule to the
triplet state is optically detected. This procedure leads to a lengthened
single-molecule observation time and an increased total number of detected
photons. The resulting improvement in photostability unambiguously confirms the
importance of photoexcitation from the triplet state in photobleaching
dynamics, and may allow the investigation of new phenomena at the
single-molecule level
Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize.
Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery
Fast 18F Labeling of a Near-Infrared Fluorophore Enables Positron Emission Tomography and Optical Imaging of Sentinel Lymph Nodes
We combine a novel boronate trap for F− with a near-infrared fluorophore into a single molecule. Attachment to targeting ligands enables localization by positron emission tomography (PET) and near-infrared fluorescence (NIRF). Our first application of this generic tag is to label Lymphoseek (tilmanocept), an agent designed for receptor-specific sentinel lymph node (SLN) mapping. The new conjugate incorporates 18F− in a single, aqueous step, targets mouse SLN rapidly (1 h) with reduced distal lymph node accumulation, permits PET or scintigraphic imaging of SLN, and enables NIRF-guided excision and histological verification even after 18F decay. This embodiment is superior to current SLN mapping agents such as nontargeted [99mTc]sulfur colloids and Isosulfan Blue, as well as the phase III targeted ligand [99mTc]SPECT Lymphoseek counterpart, species that are visible by SPECT or visible absorbance separately. Facile incorporation of 18F into a NIRF probe should promote many synergistic PET and NIRF combinations
Identification of Neural Circuits by Imaging Coherent Electrical Activity with FRET-Based Dyes
AbstractWe show that neurons that underlie rhythmic patterns of electrical output may be identified by optical imaging and frequency-domain analysis. Our contrast agent is a two-component dye system in which changes in membrane potential modulate the relative emission between a pair of fluorophores. We demonstrate our methods with the circuit responsible for fictive swimming in the isolated leech nerve cord. The output of a motor neuron provides a reference signal for the phase-sensitive detection of changes in fluorescence from individual neurons in a ganglion. We identify known and possibly novel neurons that participate in the swim rhythm and determine their phases within a cycle. A variant of this approach is used to identify the postsynaptic followers of intracellularly stimulated neurons
Fluorescence Photooxidation with Eosin - a Method for High-Resolution Immunolocalization and in-Situ Hybridization Detection for Light and Electron-Microscopy
A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate
Perfect Fluid Theory and its Extensions
We review the canonical theory for perfect fluids, in Eulerian and Lagrangian
formulations. The theory is related to a description of extended structures in
higher dimensions. Internal symmetry and supersymmetry degrees of freedom are
incorporated. Additional miscellaneous subjects that are covered include
physical topics concerning quantization, as well as mathematical issues of
volume preserving diffeomorphisms and representations of Chern-Simons terms (=
vortex or magnetic helicity).Comment: 3 figure
- …