150 research outputs found
The Search for Higher in Houston
It is a great pleasure to be invited to join the chorus on this auspicious
occasion to celebrate Professor K. Alex Mueller's 90th birthday by Professors
Annette Bussman-Holder, Hugo Keller, and Antonio Bianconi. As a student in high
temperature superconductivity, I am forever grateful to Professor Alex Mueller
and Dr. Georg Bednorz "for their important breakthrough in the discovery of
superconductivity in the ceramic materials" in 1986 as described in the
citation of their 1987 Nobel Prize in Physics. It is this breakthrough
discovery that has ushered in the explosion of research activities in high
temperature superconductivity (HTS) and has provided immense excitement in HTS
science and technology in the ensuing decades till now. Alex has not been
resting on his laurels and has continued to search for the origin of the
unusual high temperature superconductivity in cuprates.Comment: Dedicated to Alex Mueller, whose "important breakthrough in the
discovery of superconductivity in ceramic materials" in 1986 has changed the
world of superconductivit
Застосування кавітаційних технологій при виготовленні біопального
Розглянуто технологічний процес, який реалізується за допомогою запропонованої установки для приготування дизельного пального із використанням послідовно встановлених імпульсного клапана та кавітаційних ежекторів-форсунок, а також турбінних змішувачів, які при відповідному налаштуванні робочих режимів руху оброблюваної рідини (оптимальні характеристики поля швидкостей та тиску), має основні переваги порівняно з відомими, а саме: отримання якісної вихідної продукції при значній економії енергоресурсів; широкий діапазон регулювання кавітаційно-кумулятивних процесів; менша металоємність; простота конструкції; невелика вартість установки
Synthesis of technetium hydride TcH at 27 GPa
In this work, we synthesize and investigate lower technetium hydrides at
pressures up to 45 GPa using the synchrotron X-ray diffraction, reflectance
spectroscopy, and ab initio calculations. In the Tc-H system, the hydrogen
content in TcH phases increases when the pressure rises, and at 27 GPa we
found a new hexagonal (hcp) nonstoichiometric hydride TcH. The
formation of technetium hydrides is also confirmed by the emergence of a new
reflective band at 450-600 nm in the reflectance spectra of TcH samples
synthesized at 45 GPa. On the basis of the theoretical analysis, we proposed
crystal structures for the TcH (TcH) and
TcH (TcH) phases previously obtained at 1-2 GPa. The
calculations of the electron-phonon interaction show that technetium hydrides
TcH do not possess superconducting properties due to the low
electron-phonon interaction parameter ()
QCD factorization for forward hadron scattering at high energies
We consider the QCD factorization of DIS structure functions at small x and
amplitudes of 2->2 -hadronic forward scattering at high energy. We show that
both collinear and k_T-factorization for these processes can be obtained
approximately as reductions of a more general (totally unintegrated) form of
the factorization. The requirement of ultraviolet and infrared stability of the
factorization convolutions allows us to obtain restrictions on the fits for the
parton distributions in k_T- and collinear factorization.Comment: 18 pages, 10 figures In the present version misprints found in the
prevcious version are corrected and some more details are explaine
Puzzles of Dark Matter - More Light on Dark Atoms?
Positive results of dark matter searches in experiments DAMA/NaI and
DAMA/LIBRA confronted with results of other groups can imply nontrivial
particle physics solutions for cosmological dark matter. Stable particles with
charge -2, bound with primordial helium in O-helium "atoms" (OHe), represent a
specific nuclear-interacting form of dark matter. Slowed down in the
terrestrial matter, OHe is elusive for direct methods of underground Dark
matter detection using its nuclear recoil. However, low energy binding of OHe
with sodium nuclei can lead to annual variations of energy release from OHe
radiative capture in the interval of energy 2-4 keV in DAMA/NaI and DAMA/LIBRA
experiments. At nuclear parameters, reproducing DAMA results, the energy
release predicted for detectors with chemical content other than NaI differ in
the most cases from the one in DAMA detector. Moreover there is no bound
systems of OHe with light and heavy nuclei, so that there is no radiative
capture of OHe in detectors with xenon or helium content. Due to dipole Coulomb
barrier, transitions to more energetic levels of Na+OHe system with much higher
energy release are suppressed in the correspondence with the results of DAMA
experiments. The proposed explanation inevitably leads to prediction of
abundance of anomalous Na, corresponding to the signal, observed by DAMA.Comment: Contribution to Proceedings of XIII Bled Workshop "What Comes beyond
the Standard Model?
Correlation effects during liquid infiltration into hydrophobic nanoporous mediums
Correlation effects arising during liquid infiltration into hydrophobic
porous medium are considered. On the basis of these effects a mechanism of
energy absorption at filling porous medium by nonwetting liquid is suggested.
In accordance with this mechanism, the absorption of mechanical energy is a
result expenditure of energy for the formation of menisci in the pores on the
shell of the infinite cluster and expenditure of energy for the formation of
liquid-porous medium interface in the pores belonging to the infinite cluster
of filled pores. It was found that in dependences on the porosity and,
consequently, in dependences on the number of filled pores neighbors, the
thermal effect of filling can be either positive or negative and the cycle of
infiltration-defiltration can be closed with full outflow of liquid. It can
occur under certain relation between percolation properties of porous medium
and the energy characteristics of the liquid-porous medium interface and the
liquid-gas interface. It is shown that a consecutive account of these
correlation effects and percolation properties of the pores space during
infiltration allow to describe all experimental data under discussion
The High-Acceptance Dielectron Spectrometer HADES
HADES is a versatile magnetic spectrometer aimed at studying dielectron
production in pion, proton and heavy-ion induced collisions. Its main features
include a ring imaging gas Cherenkov detector for electron-hadron
discrimination, a tracking system consisting of a set of 6 superconducting
coils producing a toroidal field and drift chambers and a multiplicity and
electron trigger array for additional electron-hadron discrimination and event
characterization. A two-stage trigger system enhances events containing
electrons. The physics program is focused on the investigation of hadron
properties in nuclei and in the hot and dense hadronic matter. The detector
system is characterized by an 85% azimuthal coverage over a polar angle
interval from 18 to 85 degree, a single electron efficiency of 50% and a vector
meson mass resolution of 2.5%. Identification of pions, kaons and protons is
achieved combining time-of-flight and energy loss measurements over a large
momentum range. This paper describes the main features and the performance of
the detector system
- …