9 research outputs found

    Visualizing solutions of the circular restricted three-body problem

    No full text
    The stability of a satellite near the Lagrange points is studied in a Circular Restricted Three-Body Problem (CR3BP). The Runge Kutta method is used to trace out the orbital path of the satellite over a period of time. Various initial positions near the Lagrange points and velocities are used to produce various paths the satellite can take. The primary paths focused are on horseshoe paths. Horseshoe orbits are shown to be sometimes stable and sometimes chaotic.M.S.Includes bibliographical references (p. 40)by Nkosi Nathan Tri

    Hepatic Stellate Cells Express the Low Affinity Nerve Growth Factor Receptor p75 and Undergo Apoptosis in Response to Nerve Growth Factor Stimulation

    No full text
    We have examined the expression of p75, a member of the TNF receptor superfamily in hepatic stellate cells (HSC) and pancreatic stellate cells (PSC). Activated HSC and PSC were demonstrated by Western blot analysis to express p75. p75 was immunolocalized to cells with a myofibroblast-like morphology in the fibrotic bands of six fibrotic and cirrhotic liver biopsies and three biopsies of fibrotic human pancreas. Immunostaining of parallel sections indicated that these cells were α-smooth muscle actin-positive, identifying them as activated HSC and PSC, respectively. HSC apoptosis in tissue culture in the presence of serum was quantified after addition of 0.1 to 100 ng/ml of nerve growth factor (NGF) a ligand for p75, by in situ counting of apoptotic bodies after addition of acridine orange. HSC demonstrated a significant increase in apoptosis in response to 100 ng/ml NGF (0.05 > P by Wilcoxon’s rank; n = 7) after 24 hours. NGF 100 ng/ml had no effect on HSC proliferation, but reduced total HSC DNA by 19% relative to control after 24 hours (n = 3). These data demonstrate that activated HSC express p75 and respond to NGF stimulation by undergoing apoptosis. We therefore report p75 as a novel marker of activated HSC and suggest that signaling via ligand binding to p75 may provide a mechanism for selective apoptosis of HSC

    Impaired proteolysis of Collagen I inhibits proliferation of hepatic stellate cells: implications for regulation of liver fibrosis

    No full text
    Myofibroblastic-activated hepatic stellate cells are the major source of the collagen I-rich extracellular matrix in liver fibrosis but also produce matrix metalloproteinases, which remodel this protein. We have investigated the role of collagen I proteolysis in both regulating proliferation and maintaining the activated myofibroblastic phenotype of stellate cells in vitro. Compared with stellate cells plated on normal collagen I, those plated on a collagenase-resistant form of collagen I (r/r collagen) had reduced thymidine incorporation and proliferating cell nuclear antigen expression but increased p21 expression. Collagen I was shown to be rendered resistant to matrix metalloproteinases by artificial cross-linking in vitro using tissue transglutaminase exerted similar antiproliferative effects on stellate cells to r/r collagen. Of the stellate cell activation markers examined (tissue inhibitor of metalloproteinases-1, -smooth muscle actin, matrix metalloproteinases-2 and -9, and procollagen I) only the last was decreased by culture on r/r collagen relative to normal collagen I. Antagonists of integrin v3, an integrin reported to stimulate stellate cell proliferation, significantly inhibited adhesion, proliferation, and procollagen I synthesis of stellate cells plated on normal collagen I but had reduced effectiveness on these parameters in cells on r/r collagen. We conclude that proliferation of stellate cells is promoted by pericellular collagen I proteolysis acting via v3 integrin. Cross-linking of collagen I by tissue transglutaminase, a process known to occur in chronic liver fibrosis, might not only increase its resistance to matrix metalloproteinases thereby inhibiting resolution of fibrosis but also functions to constrain the fibroproliferative process

    Hepatocytes express nerve growth factor during liver injury: evidence for paracrine regulation of hepatic stellate cell apoptosis

    No full text
    A key feature of recovery from liver fibrosis is hepatic stellate cell (HSC) apoptosis, which serves the dual function of removing the major source of neomatrix and tissue inhibitors of metalloproteinases thereby facilitating matrix degradation. The mechanisms regulating HSC apoptosis remain undefined but may include the interaction of nerve growth factor (NGF) with its receptor, p75, on HSC. In this study, by TaqMan polymerase chain reaction in situ hybridization and immunohistochemistry, we demonstrate that NGF is expressed by hepatocytes during fibrotic injury. Peak hepatocyte expression of NGF (48 hours after CCl4 injection) coincides with maximal rate of apoptosis of HSC by terminal dUTP nick-end labeling staining. Addition of recombinant NGF to HSC in tissue culture causes a dose-dependent increase in apoptosis. NGF regulates nuclear factor (NF)-?B activity, reducing p50/p65 binding detected by electromobility shift assay and reduced NF-?B CAT reporter activities from both basal unstimulated levels and after NF-?B induction by tumor necrosis factor. In each case, a relative reduction in NF-?B binding was associated with a significant increase in caspase 3 activity. These data provide evidence that NGF is expressed during fibrotic liver injury and may regulate number of activated HSCs via induction of apoptosis

    Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking

    No full text
    Background & Aims: Liver fibrosis and cirrhosis result from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs). Previously considered irreversible, we have studied a model of cirrhosis to determine the mechanisms mediating and limiting spontaneous recovery. Methods: A micronodular cirrhosis was induced in rats after 12 weeks of CCl4 intoxication. Livers were analyzed for evidence of matrix degradation, matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) expression, stellate cell apoptosis, tissue transglutaminase (tTg) expression, and matrix cross-linking during spontaneous recovery of up to 366 days. Results: Over 366 days of recovery, micronodular cirrhosis underwent significant remodeling to a macronodular cirrhosis. Expression of collagen-1 and TIMP messenger RNA (mRNA) decreased significantly and active MMPs were shown in livers during remodeling of fibrosis. Resolution also was characterized by apoptosis of HSCs, predominantly at the margins of fibrotic septa. Residual septa, not remodeled at 366 days, were characterized by tTg-mediated cross-linking and relative hypocellularity. Conclusion: Recovery from comparatively advanced cirrhosis is possible and results in remodeling from a micronodular cirrhosis to a macronodular cirrhosis. We suggest resolution is limited by tTg-mediated matrix cross-linking and a failure of HSC apoptosis

    Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats

    No full text
    Background & Aims: Hepatic stellate cells (HSCs) play a pivotal role in liver fibrosis and stimulating their apoptosis could be an effective treatment for liver fibrosis.Methods: Activated HSCs, hepatocytes, and rats with liver fibrosis were treated with gliotoxin.Results: Addition of gliotoxin to activated (-smooth muscle actin positive) rat and human HSCs resulted in morphologic alterations typical of apoptosis. Within 2–3 hours of incubation, caspase 3 activity was markedly induced and caspase inhibitor 1 (Z-VAD-FMK)-sensitive oligonucleosome-length DNA fragments were detectable by gel electrophoresis of low molecular weight DNA. Apoptosis was widespread as judged by fluorescence-activated cell sorter analysis and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining in both rat and human HSCs at concentrations that had no effect on the viability of rat hepatocytes. Gliotoxin treatment significantly reduced the number of activated stellate cells and mean thickness of bridging fibrotic septae in livers from rats treated with carbon tetrachloride.Conclusions: These data demonstrate proof-of-concept that by up-regulating HSC apoptosis, the extent of fibrosis can be decreased in inflammatory liver injury

    Global Survey of Outcomes of Neurocritical Care Patients: Analysis of the PRINCE Study Part 2

    No full text
    BACKGROUND: Neurocritical care is devoted to the care of critically ill patients with acute neurological or neurosurgical emergencies. There is limited information regarding epidemiological data, disease characteristics, variability of clinical care, and in-hospital mortality of neurocritically ill patients worldwide. We addressed these issues in the Point PRevalence In Neurocritical CarE (PRINCE) study, a prospective, cross-sectional, observational study. METHODS: We recruited patients from various intensive care units (ICUs) admitted on a pre-specified date, and the investigators recorded specific clinical care activities they performed on the subjects during their first 7 days of admission or discharge (whichever came first) from their ICUs and at hospital discharge. In this manuscript, we analyzed the final data set of the study that included patient admission characteristics, disease type and severity, ICU resources, ICU and hospital length of stay, and in-hospital mortality. We present descriptive statistics to summarize data from the case report form. We tested differences between geographically grouped data using parametric and nonparametric testing as appropriate. We used a multivariable logistic regression model to evaluate factors associated with in-hospital mortality. RESULTS: We analyzed data from 1545 patients admitted to 147 participating sites from 31 countries of which most were from North America (69%, N = 1063). Globally, there was variability in patient characteristics, admission diagnosis, ICU treatment team and resource allocation, and in-hospital mortality. Seventy-three percent of the participating centers were academic, and the most common admitting diagnosis was subarachnoid hemorrhage (13%). The majority of patients were male (59%), a half of whom had at least two comorbidities, and median Glasgow Coma Scale (GCS) of 13. Factors associated with in-hospital mortality included age (OR 1.03; 95% CI, 1.02 to 1.04); lower GCS (OR 1.20; 95% CI, 1.14 to 1.16 for every point reduction in GCS); pupillary reactivity (OR 1.8; 95% CI, 1.09 to 3.23 for bilateral unreactive pupils); admission source (emergency room versus direct admission [OR 2.2; 95% CI, 1.3 to 3.75]; admission from a general ward versus direct admission [OR 5.85; 95% CI, 2.75 to 12.45; and admission from another ICU versus direct admission [OR 3.34; 95% CI, 1.27 to 8.8]); and the absence of a dedicated neurocritical care unit (NCCU) (OR 1.7; 95% CI, 1.04 to 2.47). CONCLUSION: PRINCE is the first study to evaluate care patterns of neurocritical patients worldwide. The data suggest that there is a wide variability in clinical care resources and patient characteristics. Neurological severity of illness and the absence of a dedicated NCCU are independent predictors of in-patient mortality.status: publishe

    Worldwide Organization of Neurocritical Care: Results from the PRINCE Study Part 1

    No full text

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore