82 research outputs found

    Tunable capacitive inter-dot coupling in a bilayer graphene double quantum dot

    Full text link
    We report on a double quantum dot which is formed in a width-modulated etched bilayer graphene nanoribbon. A number of lateral graphene gates enable us to tune the quantum dot energy levels and the tunneling barriers of the device over a wide energy range. Charge stability diagrams and in particular individual triple point pairs allow to study the tunable capacitive inter-dot coupling energy as well as the spectrum of the electronic excited states on a number of individual triple points. We extract a mutual capacitive inter-dot coupling in the range of 2 - 6 meV and an inter-dot tunnel coupling on the order of 1.5 {\mu}eV.Comment: 6 pages, 4 figure

    Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function

    Full text link
    The connectivity within single carrier information-processing devices requires transport and storage of single charge quanta. Our all-electrical Si/SiGe shuttle device, called quantum bus (QuBus), spans a length of 10 μ\mathrm{\mu}m and is operated by only six simply-tunable voltage pulses. It operates in conveyor-mode, i.e. the electron is adiabatically transported while confined to a moving QD. We introduce a characterization method, called shuttle-tomography, to benchmark the potential imperfections and local shuttle-fidelity of the QuBus. The fidelity of the single-electron shuttle across the full device and back (a total distance of 19 μ\mathrm{\mu}m) is (99.7±0.3)%(99.7 \pm 0.3)\,\%. Using the QuBus, we position and detect up to 34 electrons and initialize a register of 34 quantum dots with arbitrarily chosen patterns of zero and single-electrons. The simple operation signals, compatibility with industry fabrication and low spin-environment-interaction in 28^{28}Si/SiGe, promises spin-conserving transport of spin qubits for quantum connectivity in quantum computing architectures.Comment: 11 pages, 6 figure

    Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe

    Full text link
    Long-ranged coherent qubit coupling is a missing function block for scaling up spin qubit based quantum computing solutions. Spin-coherent conveyor-mode electron-shuttling could enable spin quantum-chips with scalable and sparse qubit-architecture. Its key feature is the operation by only few easily tuneable input terminals and compatibility with industrial gate-fabrication. Single electron shuttling in conveyor-mode in a 420 nm long quantum bus has been demonstrated previously. Here we investigate the spin coherence during conveyor-mode shuttling by separation and rejoining an Einstein-Podolsky-Rosen (EPR) spin-pair. Compared to previous work we boost the shuttle velocity by a factor of 10000. We observe a rising spin-qubit dephasing time with the longer shuttle distances due to motional narrowing and estimate the spin-shuttle infidelity due to dephasing to be 0.7 % for a total shuttle distance of nominal 560 nm. Shuttling several loops up to an accumulated distance of 3.36 μ\mum, spin-entanglement of the EPR pair is still detectable, giving good perspective for our approach of a shuttle-based scalable quantum computing architecture in silicon

    Electron-hole crossover in gate-controlled bilayer graphene quantum dots

    Full text link
    Electron and hole Bloch states in gapped bilayer graphene exhibit topological orbital magnetic moments with opposite signs near the band edges, which allows for tunable valley-polarization in an out-of-plane magnetic field. This intrinsic property makes electron and hole quantum dots (QDs) in bilayer graphene interesting for valley and spin-valley qubits. Here we show measurements of the electron-hole crossover in a bilayer graphene QD, demonstrating the opposite sign of the orbital magnetic moments associated with the Berry curvature. Using three layers of metallic top gates, we independently control the tunneling barriers of the QD while tuning the occupation from the few-hole regime to the few-electron regime, crossing the displacement-field controlled band gap. The band gap is around 25 meV, while the charging energies of the electron and hole dots are between 3-5 meV. The extracted valley g-factor is around 17 and leads to opposite valley polarization for electron and hole states at moderate B-fields. Our measurements agree well with tight-binding calculations for our device

    Integration of selectively grown topological insulator nanoribbons in superconducting quantum circuits

    Full text link
    We report on the precise integration of nm-scale topological insulator Josephson junctions into mm-scale superconducting quantum circuits via selective area epitaxy and local stencil lithography. By studying dielectric losses of superconducting microwave resonators fabricated on top of our selective area growth mask, we verify the compatibility of this in situ technique with microwave applications. We probe the microwave response of on-chip microwave cavities coupled to topological insulator-shunted superconducting qubit devices and observe a power dependence that indicates nonlinear qubit behaviour. Our method enables integration of complex networks of topological insulator nanostructures into superconducting circuits, paving the way for both novel voltage-controlled Josephson and topological qubits.Comment: 11 pages, 6 figure

    Níveis de lisina digestível em rações, em que se manteve ou não a relação aminoacídica, para frangos de corte de 1 a 21 dias de idade, mantidos em estresse por calor

    Get PDF
    Dois ensaios foram conduzidos para avaliar os efeitos de níveis de lisina digestível em rações em que se manteve ou não a relação aminoacídica sobre o desempenho de frangos de corte machos de 1 a 21 dias de idade, criados em alta temperatura. O delineamento experimental utilizado em ambos os ensaios foi o inteiramente casualizado. As aves, no ensaio 1, foram distribuídas em cinco tratamentos (0,92; 0,98; 1,04; 1,10 e 1,16% de lisina digestível em ração convencional), oito repetições e dez aves por repetição. No ensaio 2, os frangos foram distribuídos em quatro tratamentos (1,04; 1,10; 1,16 e 1,22% de lisina digestível em rações mantendo a relação aminoacídica), oito repetições e dez aves por repetição. No ensaio 1, os tratamentos influenciaram quadraticamente o ganho de peso e o consumo de ração, que aumentaram até os níveis de 1,14 e 1,09% de lisina, respectivamente. Embora a conversão alimentar tenha melhorado de forma linear, o modelo LRP foi o que melhor se ajustou aos dados, estimando em 1,097% o nível de lisina a partir do qual ocorreu um platô. Não houve efeito dos tratamentos sobre os pesos absolutos do coração, fígado e intestinos, enquanto o peso absoluto da moela aumentou linearmente. O peso absoluto da carcaça aumentou, enquanto os pesos relativos do coração e do fígado reduziram quadraticamente com os tratamentos. No ensaio 2, os tratamentos influenciaram de forma linear crescente o ganho de peso e a conversão alimentar, enquanto o consumo de ração não variou. Os tratamentos influenciaram linearmente o peso absoluto da carcaça, enquanto os pesos absoluto e relativo das vísceras não variaram. Concluiu-se que frangos de corte machos, de 1 a 21 dias de idade, mantidos em estresse por calor, exigem, no mínimo, 1,14 e 1,22% de lisina digestível em ração convencional e em ração em que se manteve a relação aminoacídica, respectivamente.Two trials were conducted to evaluate the effects of digestible lysine levels in diets maintaining or not the relationship of amino acids, on performance of broilers from 1 to 21 days, kept under heat stress. A completely randomized experimental design was used in both trials. In the trial 1, the broilers were allotted in five treatments (0.92; 0.98; 1.04; 1.10 and 1.16% of lysine in conventional diets), eight replicates and ten broilers per replicate. In the trial 2, the broilers were allotted in four treatments (1.04; 1.10; 1.16 and 1.22% of lysine in diet maintaining the relationship of amino acids), eight replicates and ten broilers per replicate. In the trial 1, the digestible lysine levels influenced quadraticly the weight gain and the feed intake that increased up to 1.14 and 1.09%, respectively. Although feed:gain ratio had changed by linear way, the LRP model adjusted better to the data, estimating in 1.097% the lysine level where occurred a "plateau". There was no effect of treatments on absolute weights of heart, liver and intestines, while the absolute weight of gizzard increased linearly. The absolute weight of carcass increased while the relative weights of heart and liver reduced quadraticly. In the trial 2, the treatments influenced in a crescent linear way the weight gain and the feed:gain ratio while the feed intake was not influenced. The treatments influenced linearly the absolute weight of carcass while the absolute and relative weights of the organs were not influenced. It was concluded that male broilers, in the period from 1 to 21 days of age, kept under heat stress, require at least 1.14 and 1.22% of digestible lysine in conventional diet and in diet maintaining the relationship of amino acid, respectively

    Entwicklung und Charakterisierung vertikaler Double-Gate-MOS-Feldeffekttransistoren

    Get PDF
    Planar MOS-field-effect transistors are common devices today used by the computer industry. When their miniaturization reaches its limit, alternate transistor concepts become necessary. In this thesis the development of vertical Double-Gate-MOS-field-effect transistors is presented. These types of transistors have a vertically aligned p-n-p junction (or n-p-n junction, respectively). Consequently, the source-drain current flows perpendicular with respect to the surface of the wafer. A Double-Gate-field-effect transistor is characterized by a very thin channel region framed by two parallel gates. Due to the symmetry of the structure and less bulk volume better gate control and hence better short channel behavior is expected, as well as an improved scaling potential. Nanostructuring of the transistor's active region is very challenging. Approximately 300 nm high and down to 30 nm wide silicon ridges are requisite. They can be realized using hydrogen silsesquioxane (HSQ) as inorganic high resolution resist for electron beam lithography. Structures defined in HSQ are then transferred with high anisotropy and selectivity into silicon using ICP-RIE (reactive ion etching with inductive coupled plasma). 25 nm wide and 330 nm high silicon ridges are achieved. Different transistor layouts are realized. The channel length is defined by epitaxial growth of doped silicon layers before or by ion implantation after nanostructuring, respectively. The transistors show source-drain currents up to 380 μ\muA/μ\mum and transconductances up to 480 pS/pm. Improved short channel behavior for decreasing width of the silicon ridges is demonstrated

    U-shaped bimorph micro-electromechanical cantilevers with combined thermal/electrostatic actuation

    No full text
    MEMS technology offers a very attractive alternative for applications in microwave systems. However, commonly used micro-electromechanical electrostatically driven switches require relatively high operation voltages. We have developed thermally actuated cantilevers which operate at lower voltages. Our approach for the fabrication of U-shaped bimetal micro-cantilevers is based on Au/Nb bilayers within a CMOS compatible room temperature process. For microwave switch applications the MEMS structures have been integrated into coplanar waveguide (CPW) structures. In order to reduce the high power consumption of a purely thermally activated switch, the thermal actuation scheme was combined with electrostatic actuation. Our combined switch requires an operation voltage of 15 V, the power consumption was found to be about 80 μJ/switch cycle
    corecore