333 research outputs found
Photo-disintegration cross section measurements on W, Re and Os: Implications for the Re-Os cosmochronology
Cross sections of the W, Re, Os() reactions
were measured using quasi-monochromatic photon beams from laser Compton
scattering (LCS) with average energies from 7.3 to 10.9 MeV. The results are
compared with the predictions of Hauser-Feshbach statistical calculations using
four different sets of input parameters. In addition, the inverse neutron
capture cross sections were evaluated by constraining the model parameters,
especially the strength function, on the basis of the experimental data.
The present experiment helps to further constrain the correction factor
for the neutron capture on the 9.75 keV state in Os.
Implications of to the Re-Os cosmochronology are discussed with a
focus on the uncertainty in the estimate of the age of the Galaxy.Comment: 11 page
Photodisintegration of as a probe of neutron capture for the s-process branch-point nucleus
Photoneutron cross sections were measured for 80Se near the neutron separation energy with the laser Compton scattering γ rays. The stellar neutron capture rate for 79Se was evaluated by using the photodisintegration data as constraints on the E1 γ strength function within the framework of the Hauser-Feshbach statistical model. The result is compared with the model calculation of Bao and Käppeler. © Copyright owned by the author(s).SCOPUS: cp.pinfo:eu-repo/semantics/publishe
Structure of isobaric analog states in 91Nb populated by the 90Zr(a,t) reaction
Decay via proton emission of isobaric analog states (IAS's) in
was studied using the reaction at =180 MeV.
This study provides information about the damping mechanism of these states.
Decay to the ground state and low-lying phonon states in was
observed. The experimental data are compared with theoretical predictions
wherein the IAS `single-particle' proton escape widths are calculated in a
continuum RPA approach. The branching ratios for decay to the phonon states are
explained using a simple model.Comment: 3 figures. submitted to Phys. Lett.
Thin Ice Target for O(p,p') experiment
A windowless and self-supporting ice target is described. An ice sheet with a
thickness of 29.7 mg/cm cooled by liquid nitrogen was placed at the target
position of a magnetic spectrometer and worked stably in the O
experiment at MeV. Background-free spectra were obtained.Comment: 14 pages, 4 figures, Nucl. Instr. & Meth. A (in press
Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress
10.1172/JCI63051Journal of Clinical Investigation12282793-2806JCIN
Backward-angle photoproduction of mesons on the proton at = 1.5--2.4 GeV
Differential cross sections and photon beam asymmetries for
photoproduction have been measured at = 1.5--2.4 GeV and at the
scattering angles, --1 cos --0.6. The
energy-dependent slope of differential cross sections for -channel
production has been determined. An enhancement at backward angles is found
above = 2.0 GeV. This is inferred to be due to the -channel
contribution and/or resonances. Photon beam asymmetries have been obtained for
the first time at backward angles. A strong angular dependence has been found
at 2.0 GeV, which may be due to the unknown high-mass resonances.Comment: 12 pages, 4 figures, submitted to PL
Near-threshold Lambda(1520) production by the gamma p -> K+Lambda(1520) reaction at forward K+ angles
Differential cross sections and photon-beam asymmetries for the gamma p -> K+
Lambda(1520) reaction have been measured with linearly polarized photon beams
at energies from the threshold to 2.4 GeV at 0.6<cos(theta)<1. A new bump
structure was found at W=2.11 GeV in the cross sections. The bump is not well
reproduced by theoretical calculations introducing a nucleon resonance with
J<=3/2. This result suggests that the bump might be produced by a nucleon
resonance possibly with J>=5/2 or by a new reaction process, for example an
interference effect with the phi photoproduction having a similar bump
structure in the cross sections.Comment: 5 pages, 4 figures, published in Phys. Rev. Let
- …