13 research outputs found

    Formación de taumasita en morteros hidráulicos mediante la deposición de SO2 atmosférico

    Get PDF
    Sulphation of mortars and concretes is a function of diverse environmental factors (SO2 aerosol, temperature, etc) as well as some material characteristics. One of the phases that could be formed as consequence of the sulphation of the hydraulic binder is thaumasite. In this paper different hydraulic mortars have been exposed to laboratory exposure chambers in order to reproduce thaumasite formation due to atmospheric SO2. Under the laboratory exposure conditions, thaumasite was formed in hydraulic lime mortars, and mortars elaborated with ordinary Portland cement as well as mineralized white portland cement. However, thaumasite was not formed in mortars made of lime and pozzolan. The first product formed as a result of the SO2-mortar interaction was gypsum. Gypsum reacted with calcite and C-S-H gel, present in the samples, giving place to thaumasite. Low temperature promotes thaumasite formation.La sulfatación de morteros y hormigones depende de las condiciones ambientales (SO2 aerosol, temperatura, etc.), así como de las características del material. Una de las fases que se puede formar como consecuencia de la sulfatación de los ligantes hidráulicos es la taumasita. En este trabajo se han expuesto diferentes morteros hidráulicos en cámaras de laboratorio con el fin de reproducir la formación de taumasita por efecto del SO2 atmosférico. Bajo las condiciones de laboratorio se formó taumasita en los morteros de cal hidráulica y en los morteros fabricados con cemento portland y cemento blanco mineralizado. Sin embargo, cuando el ligante utilizado en los morteros fue cal y puzolana, no se formó taumasita. El yeso fue el primer producto formado en la interacción entre los morteros y el SO2. A continuación, este yeso reaccionó con la calcita y el gel C-S-H dando lugar a la formación de taumasita. Las bajas temperaturas favorecieron la formación de taumasita

    Damage analysis as a step towards compatible repair mortars

    No full text
    RILEM Publicatio

    Formación de taumasita en morteros hidráulicos mediante la deposición de SO^ atmosférico

    Get PDF
    [EN]Sulphation of mortars and concretes is a function of diverse environmental factors (SO^ aerosol, temperature, etc) as well as some material characteristics. One of the phases that could be formed as consequence of the sulphation of the hydraulic binder is thaumasite. In this paper different hydraulic mortars have been exposed to laboratory exposure chambers in order to reproduce thaumasite formation due to atmospheric SO^. Under the laboratory exposure conditions, thaumasite was formed in hydraulic lime mortars, and mortars elaborated with ordinary Portland cement as well as mineralized white portland cement. However, thaumasite was not formed in mortars made of lime and pozzolan. The first product formed as a result of the SO^-mortar interaction was gypsum. Gypsum reacted with calcite and C-S-H gel. present in the samples, giving place to thaumasite. Low temperature promotes thaumasite formation.[ES]La sulfatación de morteros y hormigones depende de las condiciones ambientales (SO^ aerosol, temperatura, etc.), así como de las características del material. Una de las fases que se puede formar como consecuencia de la sulfatación de los ligantes hidráulicos es la taumasita. En este trabajo se han expuesto diferentes morteros hidráulicos en cámaras de laboratorio con el fin de reproducir la formación de taumasita por efecto del SO^ atmosférico. Bajo las condiciones de laboratorio se formó taumasita en los morteros de cal hidráulica y en los morteros fabricados con cemento port land y cemento blanco mineralizado. Sin embargo, cuando el ligante utilizado en los morteros fue cal y puzolana, no se formó taumasita. El yeso fue el primer producto formado en la interacción entre los morteros y el SO^. A continuación, este yeso reaccionó con la calcita y el gel C-S-H dando lugar a la formación de taumasita. Las bajas temperaturas favorecieron la formación de taumasita.Peer reviewe

    Thaumasite formation due to atmospheric SO2–hydraulic mortar interaction

    No full text
    [EN]The objective of this paper was to reproduce the formation of thaumasite due to the reaction of atmospheric SO2 with hydraulic mortars. The research was carried out on mortars made with ordinary Portland cement (OPC), mineralized white Portland cement, hydraulic lime and a mixture of lime and pozzolana. Mortars underwent sulfation by exposing the samples to 300 ppm SO2 at 25 °C and 95% RH for 2 days. Subsequently, half of the sulfated samples were kept for 6 and 12 months in a chamber with 0.3 ppm, SO2 as pollutant (0.50 l min−1 flow gas velocity), 5 °C and 95% RH. The other halves of the sulfated samples were kept partially immersed in water at 5 °C for 4, 9 and 14 months. The process of thaumasite formation in hydraulic mortars due to the interaction of the material with atmospheric SO2 was reproduced in all the hydraulic mortars kept partially immersed in water at low temperature, except in the lime–pozzolana mixture. Gypsum was the first reaction product formed as a result of that interaction. Subsequently, gypsum reacted with calcium carbonate and C–S–H gel resulting in the formation of thaumasite. The formation of thaumasite was easier and quicker in sulfated samples kept at low temperature partially immersed in water. Only in OPC mortars was thaumasite formation observed in samples exposed to 0.3 ppm of SO2 for 12 months.Peer reviewe

    Rilem TC 203-RHM: Repair mortars for historic masonry. Testing of hardened mortars, a process of questioning and interpreting

    No full text
    This paper presents an approach to the use and interpretation of tests on mortar samples when restoring historic masonry. It is largely based on the work performed by the former RILEM technical committee 167-COM, Characterisation of old mortars, closed in 2003, and the ongoing committee 203-RHM, Repair mortars for historic masonry. The focus of the present paper is on the decision process: what to test and how to interpret the test results
    corecore