115 research outputs found

    The Role of Estrogen Receptor β in the Dorsal Raphe Nucleus on the Expression of Female Sexual Behavior in C57BL/6J Mice

    Get PDF
    17β-Estradiol (E2) regulates the expression of female sexual behavior by acting through estrogen receptor (ER) α and β. Previously, we have shown that ERβ knockout female mice maintain high level of lordosis expression on the day after behavioral estrus when wild-type mice show a clear decline of the behavior, suggesting ERβ may be involved in inhibitory regulation of lordosis. However, it is not identified yet in which brain region(s) ERβ may mediate an inhibitory action of E2. In this study, we have focused on the dorsal raphe nucleus (DRN) that expresses ERβ in higher density than ERα. We site specifically knocked down ERβ in the DRN in ovariectomized mice with virally mediated RNA interference method. All mice were tested weekly for a total of 3 weeks for their lordosis expression against a stud male in two consecutive days: day 1 with the hormonal condition mimicking the day of behavioral estrus, and day 2 under the hormonal condition mimicking the day after behavioral estrus. We found that the level of lordosis expression in ERβ knockdown (βERKD) mice was not different from that of control mice on day 1. However, βERKD mice continuously showed elevated levels of lordosis behavior on day 2 tests, whereas control mice showed a clear decline of the behavior on day 2. These results suggest that the expression of ERβ in the DRN may be involved in the inhibitory regulation of sexual behavior on the day after behavioral estrus in cycling female mice

    Immobilization-induced hypersensitivity associated with spinal cord sensitization during cast immobilization and after cast removal in rats

    Get PDF
    This study examined mechanical and thermal hypersensitivity in the rat hind paw during cast immobilization of the hind limbs for 4 or 8 weeks and following cast removal. Blood flow, skin temperature, and volume of the rat hind paw were assessed in order to determine peripheral circulation of the hind limbs. Sensitization was analyzed by measuring the expression of the calcitonin gene-related peptide (CGRP) in the spinal dorsal horn following cast immobilization. Two weeks post immobilization, mechanical and thermal sensitivities increased significantly in all rats; however, peripheral circulation was not affected by immobilization. Cast immobilization for 8 weeks induced more serious hypersensitivity compared to cast immobilization for 4 weeks. Moreover, CGRP expression in the deeper lamina layer of the spinal dorsal horn increased in the rats immobilized for 8 weeks but not in those immobilized for 4 weeks. These findings suggest that immobilization-induced hypersensitivity develops during the immobilization period without affecting peripheral circulation. Our results also highlight the possibility that prolonged immobilization induces central sensitization in the spinal cord.The final publication is available at link.springer.co

    Effects of continuous passive motion on the expression of membrane type 1-matrix metalloproteinase in rat immobilized muscles

    Get PDF
    We examined the effects of continuous passive motion( CPM) on membrane type 1-matrix metalloproteinase( MT1-MMP) expression in rat immobilized muscles. Eight-week-old male Wister rats were used for each of two trials, one with 2 weeks, and another one with 4 weeks of immobilization with/without CPM. In each trial, rats were immobilized( immobilization group), and immobilized and simultaneously given CPM (CPM group). The soleus muscle of each rat was evaluated by gelatin zymography, western blotting and reverse transcription-polymerase chain reaction( RT-PCR). Gelatin zymography revealed a greater level of gelatinase activity in the extract of the muscles of the immobilization group than in those of the control and CPM group. The expressions of matrix metalloproteinase 2 (MMP-2) and MT1-MMP mRNA in the muscle extract of the immobilization group were also greater than those in the control and CPM group. Our results suggested that joint immobilization induces expression of MT1-MMP, a cleavage enzyme of MMP-2 in muscles, resulting in muscular degeneration, and that CPM can prevent these changes

    Genetic Screening of New Genes Responsible for Cellular Adaptation to Hypoxia Using a Genome-Wide shRNA Library

    Get PDF
    Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress

    Transoral surgery for superficial head and neck cancer: National Multi‐Center Survey in Japan

    Get PDF
    Head and neck cancers, especially in hypopharynx and oropharynx, are often detected at advanced stage with poor prognosis. Narrow band imaging enables detection of superficial cancers and transoral surgery is performed with curative intent. However, pathological evaluation and real-world safety and clinical outcomes have not been clearly understood. The aim of this nationwide multicenter study was to investigate the safety and efficacy of transoral surgery for superficial head and neck cancer. We collected the patients with superficial head and neck squamous cell carcinoma who were treated by transoral surgery from 27 hospitals in Japan. Central pathology review was undertaken on all of the resected specimens. The primary objective was effectiveness of transoral surgery, and the secondary objective was safety including incidence and severity of adverse events. Among the 568 patients, a total of 662 lesions were primarily treated by 575 sessions of transoral surgery. The median tumor diameter was 12 mm (range 1–75) endoscopically. Among the lesions, 57.4% were diagnosed as squamous cell carcinoma in situ. The median procedure time was 48 minutes (range 2–357). Adverse events occurred in 12.7%. Life-threatening complications occurred in 0.5%, but there were no treatment-related deaths. During a median follow-up period of 46.1 months (range 1–113), the 3-year overall survival rate, relapse-free survival rate, cause-specific survival rate, and larynx-preservation survival rate were 88.1%, 84.4%, 99.6%, and 87.5%, respectively. Transoral surgery for superficial head and neck cancer offers effective minimally invasive treatment

    Low-level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats.

    Get PDF
    Low-level laser (LLL) irradiation promotes proliferation of muscle satellite cells, angiogenesis and expression of growth factors. Satellite cells, angiogenesis and growth factors play important roles in the regeneration of muscle. The objective of this study was to examine the effect of LLL irradiation on rat gastrocnemius muscle recovering from disuse muscle atrophy. Eight-week-old rats were subjected to hindlimb suspension for 2 weeks, after which they were released and recovered. During the recovery period, rats underwent daily LLL irradiation (Ga-Al-As laser; 830 nm; 60 mW; total, 180 s) to the right gastrocnemius muscle through the skin. The untreated left gastrocnemius muscle served as the control. In conjunction with LLL irradiation, 5-bromo-2-deoxyuridine (BrdU) was injected subcutaneously to label the nuclei of proliferating cells. After 2 weeks, myofibre diameters of irradiated muscle increased in comparison with those of untreated muscle, but did not recover back to normal levels. Additionally, in the superficial region of the irradiated muscle, the number of capillaries and fibroblast growth factor levels exhibited significant elevation relative to those of untreated muscle. In the deep region of irradiated muscle, BrdU-positive nuclei of satellite cells and/or myofibres increased significantly relative to those of the untreated muscle. The results of this study suggest that LLL irradiation can promote recovery from disuse muscle atrophy in association with proliferation of satellite cells and angiogenesis.The definitive version is available at www.blackwell-synergy.com and www.expphysiol.org

    The interplay of KRAS mutational status with tumor laterality in non-metastatic colorectal cancer: An international, multi-institutional study in patients with known KRAS, BRAF, and MSI status

    Get PDF
    Background: Although the prognostic relevance of KRAS status in metastatic colorectal cancer (CRC) depends on tumor laterality, this relationship is largely unknown in non-metastatic CRC. Methods: Patients who underwent resection for non-metastatic CRC between 2000 and 2018 were identified from institutional databases at six academic tertiary centers in Europe and Japan. The prognostic relevance of KRAS status in patients with right-sided (RS), left-sided (LS), and rectal cancers was assessed. Results: Of the 1093 eligible patients, 378 had right-sided tumors and 715 had left-sided tumors. Among patients with RS tumors, the 5-year overall (OS) and recurrence-free survival (RFS) for patients with KRASmut versus wild-type tumors was not shown to differ significantly (82.2% vs. 83.2% and 72.1% vs. 76.7%, respectively, all p >.05). Among those with LS tumors, KRAS mutation was associated with shorter 5-year OS and RFS on both the univariable (OS: 79.4% vs. 86.1%, p =.004; RFS: 68.8% vs. 77.3%, p =.005) and multivariable analysis (OS: HR: 1.52, p =.019; RFS: HR: 1.32, p =.05). Conclusions: KRAS mutation status was independently prognostic among patients with LS tumors, but this association failed to reach statistical significance in RS and rectal tumors. These findings confirm reports in metastatic CRC and underline the possible biologic importance of tumor location

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore