103 research outputs found

    Chapter Emerging Techniques for Assessment of Sensorimotor Impairments after Spinal Cord Injury

    Get PDF
    Mechanical properties of the plantar soft tissue, which acts as the interface between the skeleton and the ground, play an important role in distributing the force underneath the foot and in influencing the load transfer to the entire body during weight-bearing activities. Hence, understanding the mechanical behaviour of the plantar soft tissue and the mathematical equations that govern such behaviour can have important applications in investigating the effect of disease and injuries on soft tissue function. The plantar soft tissue of the foot shows a viscoelastic behaviour, where the reaction force is not only dependent on the amount of deformation but also influenced by the deformation rate. This chapter provides an insight into the mechanical behaviour of plantar soft tissue during loading with specific emphasis on heel pad, which is the first point of contact during normal gait. Furthermore, the methods of assessing the mechanical behaviour including the in vitro/in situ and in vivo are discussed, and examples of creep, stress relaxation, rate dependency and hysteresis behaviour of the heel pad are shown. In addition, the viscoelastic models that represent the mechanical behaviour of the plantar soft tissue under load along with the equations that govern this behaviour are elaborated and discussed

    Emerging Techniques for Assessment of Sensorimotor Impairments after Spinal Cord Injury

    Get PDF
    Gait function can be altered after incomplete spinal cord (iSCI) lesions. Muscular weakness, co‐activation of antagonist muscles, and altered muscle mechanics are likely to provoke abnormal gait and postural movements. Functional scales are available for assessment of functional walking in SCI patients, such as walking index for spinal cord injury (WISCI II), timed up and go (TUG) test, 10‐meter walk test (10MWT), and 6‐minute walk test (6MWT). Novel metrics for a more detailed comprehension of neuromuscular control in terms of degree of voluntary motor control have been recently proposed. This section describes novel techniques based on muscle synergy and frequency domain analysis of electromyographic signals. Such techniques are illustrated as potential tools for assessment of motor function after SCI with experimental data and a case study describing a diagnostic scenario. This chapter presents a discussion of the current status of the emerging metrics for assessment of sensorimotor impairments. Conclusions are given with respect to the availability of enriched information about neuromuscular behavior between functional tasks (walking and pedalling) and the potential relevance of these new techniques to improve the efficacy of treatment to improve locomotion after iSCI

    Accuracy and precision of the Tobii X2-30 eye-tracking under non ideal conditions

    Get PDF
    This document describes a methodology for the measurement of accuracy and precision of a remote eye tracker, the Tobii X2-30, under non ideal condition. The test was performed with 10 people. The results are: 2.46 and 1.91 degrees for the accuracy and precision respectively. The results can be used to establish the target size on the screen.Peer Reviewe

    A method to quantify the reduction of back and hip muscle fatigue of lift-support exoskeletons

    Get PDF
    Cumulative back muscle fatigue plays a role in the occurrence of low-back injuries in occupations that require repetitive lifting of heavy loads and working in forward leaning postures. Lift-support exoskeletons have the potential to reduce back and hip muscle activity, thereby delaying the onset of fatigue in these muscles. Therefore, exoskeletons are being considered a potentially important tool to further reduce workload-related injuries. However, today no standards have been established on how to benchmark the support level of lift-support exoskeletons. This work proposes an experimental protocol to quantify the support level of a lift-support exoskeletons on instant changes in muscle activity and fatigue development while maintaining a static forward leaning posture. It then applies the protocol to experimentally assess the effect of the support provided by a commercially available lift-support exoskeleton, the LiftSuit 2.0 (Auxivo AG, Schwerzenbach, Switzerland), on the user. In a sample of 14 participants, the amplitude of the muscle activity of the back muscles and hip muscles was significantly reduced. Wearing the exoskeleton significantly reduced the amount of fatigue developed during the task . Changes in muscle fatigue can be objectively recorded and correlated with relevant changes for exoskeleton users: the time a task can be performed and perceived low-back fatigue. Thus, including such measures of fatigue in standardized benchmarking procedures will help quantify the benefits of exoskeletons for occupational use

    A mechatronic leg replica to benchmark human-exoskeleton physical interactions

    Get PDF
    : Evaluating human-exoskeleton interaction typically requires experiments with human subjects, which raises safety issues and entails time-consuming testing procedures. This paper presents a mechatronic replica of a human leg, which was designed to quantify physical interaction dynamics between exoskeletons and human limbs without the need for human testing. In the first part of this work, we present the mechanical, electronic, sensory system and software solutions integrated in our leg replica prototype. In the second part, we used the leg replica to test its interaction with two types of commercially available wearable devices, i.e. an active full leg exoskeleton and a passive knee orthosis. We ran basic test examples to demonstrate the functioning and benchmarking potential of the leg replica to assess the effects of joint misalignments on force transmission. The integrated force sensors embedded in the leg replica detected higher interaction forces in the misaligned scenario in comparison to the aligned one, in both active and passive modalities. The small standard deviation of force measurements across cycles demonstrates the potential of the leg replica as a standard test method for reproducible studies of human-exoskeleton physical interaction

    The self-regulatory German health care system between growing competition and state hierarchy

    Get PDF
    This article focuses on the changing role of the state in financing, providing and regulating health care services under the German health care system from 1970-2000. While a reduced role of the state can be observed in terms of financing, our analysis of service provision indicates inconsistent developments. Monetary resource flow analyses indicate a decrease in private service provision as a percentage of total health expenditure, but when analysing the development of health employment we see a growth in “private” health care personnel. The most important changes, however, have taken place in terms of regulation. Since the early 1990s, the traditionally self-regulatory German health care system has simultaneously faced growing competition and state hierarchy

    Noninvasive Modalities Used in Spinal Cord Injury Rehabilitation

    Get PDF
    In the past three decades, research on plasticity after spinal cord injury (SCI) has led to a gradual shift in SCI rehabilitation: the former focus on learning compensatory strategies changed to functional neurorecovery, that is, promoting restoration of function through the use of affected limbs. This paradigm shift contributed to the development of technology-based interventions aiming to promote neurorecovery through repetitive training. This chapter presents an overview of a range of noninvasive modalities that have been used in rehabilitation after SCI. Among others, we present repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), surface electrical stimulation tools such as transcutaneous electrical spinal cord stimulation (tcSCS), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES), as well as its integration with cycling training and assistive robotic devices. The most recent results attained and the potential relevance of these new techniques to strengthen the efficacy of the residual neuronal pathways and improve spasticity are also presented. Future efforts toward the widespread clinical application of these modalities include more advances in the technology, together with the knowledge obtained from basic research and clinical trials. This can ultimately lead to novel customized interventions that meet specific needs of SCI patients

    The Use of Functional Electrical Stimulation on the Upper Limb and Interscapular Muscles of Patients with Stroke for the Improvement of Reaching Movements: A Feasibility Study

    Get PDF
    Introduction: Reaching movements in stroke patients are characterized by decreased amplitudes at the shoulder and elbow joints and greater displacements of the trunk, compared to healthy subjects. The importance of an appropriate and specific contraction of the interscapular and upper limb (UL) muscles is crucial to achieving proper reaching movements. Functional electrical stimulation (FES) is used to activate the paretic muscles using short-duration electrical pulses. Objective: To evaluate whether the application of FES in the UL and interscapular muscles of stroke patients with motor impairments of the UL modifies patients’ reaching patterns, measured using instrumental movement analysis systems. Design: A cross-sectional study was carried out. Setting: The VICON Motion System® was used to conduct motion analysis. Participants: Twenty-one patients with chronic stroke. Intervention: The Compex® electric stimulator was used to provide muscle stimulation during two conditions: a placebo condition and a FES condition. Main outcome measures: We analyzed the joint kinematics (trunk, shoulder, and elbow) from the starting position until the affected hand reached the glass. Results: Participants receiving FES carried out the movement with less trunk flexion, while shoulder flexion elbow extension was increased, compared to placebo conditions. Conclusion: The application of FES to the UL and interscapular muscles of stroke patients with motor impairment of the UL has improved reaching movements.This research has been supported by Spanish Ministry of Science project HYPER PROJECT (CONSOLIDER-INGENIO 2010) Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders. HYPER-CSD2009-00067

    Legged locomotion over irregular terrains: State of the art of human and robot performance

    Get PDF
    Legged robotic technologies have moved out of the lab to operate in real environments, characterized by a wide variety of unpredictable irregularities and disturbances, all this in close proximity with humans. Demonstrating the ability of current robots to move robustly and reliably in these conditions is becoming essential to prove their safe operation. Here, we report an in-depth literature review aimed at verifying the existence of common or agreed protocols and metrics to test the performance of legged system in realistic environments. We primarily focused on three types of robotic technologies, i.e., hexapods, quadrupeds and bipeds. We also included a comprehensive overview on human locomotion studies, being it often considered the gold standard for performance, and one of the most important sources of bioinspiration for legged machines. We discovered that very few papers have rigorously studied robotic locomotion under irregular terrain conditions. On the contrary, numerous studies have addressed this problem on human gait, being nonetheless of highly heterogeneous nature in terms of experimental design. This lack of agreed methodology makes it challenging for the community to properly assess, compare and predict the performance of existing legged systems in real environments. On the one hand, this work provides a library of methods, metrics and experimental protocols, with a critical analysis on the limitations of the current approaches and future promising directions. On the other hand, it demonstrates the existence of an important lack of benchmarks in the literature, and the possibility of bridging different disciplines, e.g., the human and robotic, towards the definition of standardized procedure that will boost not only the scientific development of better bioinspired solutions, but also their market uptake

    Benchmarking Bipedal Locomotion: A Unified Scheme for Humanoids, Wearable Robots, and Humans

    Get PDF
    In the field of robotics, there is a growing awareness of the importance of benchmarking [1], [2]. Benchmarking not only allows the assessment and comparison of the performance of different technologies but also defines and supports the standardization and regulation processes during their introduction to the market. Its importance has been recently emphasized by the adoption of the technology readiness levels (TRLs) in the Horizon 2020 information and communication technologies by the European Union as an important guideline to assess when a technology can shift from one TRL to the other. The objective of this article is to define the basis of a benchmarking scheme for the assessment of bipedal locomotion that could be applied and shared across different research communities.European Commission Seventh Framework Program, and COS
    corecore