21,640 research outputs found
Mono-parametric quantum charge pumping: interplay between spatial interference and photon-assisted tunneling
We analyze quantum charge pumping in an open ring with a dot embedded in one
of its arms. We show that cyclic driving of the dot levels by a \textit{single}
parameter leads to a pumped current when a static magnetic flux is
simultaneously applied to the ring. Based on the computation of the
Floquet-Green's functions, we show that for low driving frequencies ,
the interplay between the spatial interference through the ring plus
photon-assisted tunneling gives an average direct current (dc) which is
proportional to . The direction of the pumped current can be
reversed by changing the applied magnetic field.Comment: 7 pages, 4 figures. To appear in Phys. Rev.
Observations of one young and three middle-aged -ray pulsars with the Gran Telescopio Canarias
We used the 10.4m Gran Telescopio Canarias to search for the optical
counterparts to four isolated -ray pulsars, all detected in the X-rays
by either \xmm\ or \chan\ but not yet in the optical. Three of them are
middle-aged pulsars -- PSR\, J1846+0919 (0.36 Myr), PSR\, J2055+2539 (1.2 Myr),
PSR\, J2043+2740 (1.2 Myr) -- and one, PSR\, J1907+0602, is a young pulsar
(19.5 kyr). For both PSR\, J1907+0602 and PSR\, J2055+2539 we found one object
close to the pulsar position. However, in both cases such an object cannot be a
viable candidate counterpart to the pulsar. For PSR\, J1907+0602, because it
would imply an anomalously red spectrum for the pulsar and for PSR\, J2055+2539
because the pulsar would be unrealistically bright () for the
assumed distance and interstellar extinction. For PSR\, J1846+0919, we found no
object sufficiently close to the expected position to claim a possible
association, whereas for PSR\, J2043+2740 we confirm our previous findings that
the object nearest to the pulsar position is an unrelated field star. We used
our brightness limits (), the first obtained with a
large-aperture telescope for both PSR\, J1846+0919 and PSR\, J2055+2539, to
constrain the optical emission properties of these pulsars and investigate the
presence of spectral turnovers at low energies in their multi-wavelength
spectra.Comment: 10 pages, 11 figures, accpted for publication in MNRA
Observations of three young gamma-ray pulsars with the Gran Telescopio Canarias
We report the analysis of the first deep optical observations of three
isolated -ray pulsars detected by the {\em Fermi Gamma-ray Space
Telescope}: the radio-loud PSR\, J0248+6021 and PSR\, J0631+1036, and the
radio-quiet PSR\, J0633+0632. The latter has also been detected in the X rays.
The pulsars are very similar in their spin-down age (40--60 kyrs),
spin-down energy ( erg s), and dipolar surface
magnetic field (-- G). These pulsars are promising
targets for multi-wavelength observations, since they have been already
detected in rays and in radio or X-rays. None of them has been
detected yet in the optical band. We observed the three pulsar fields in 2014
with the Spanish 10.4m Gran Telescopio Canarias (GTC). We could not find any
candidate optical counterpart to the three pulsars close to their most recent
radio or {\em Chandra} positions down to limits of ,
, for PSR\, J0248+6021, J0631+1036, and J0633+0632,
respectively. From the inferred optical upper limits and estimated distance and
interstellar extinction, we derived limits on the pulsar optical luminosity. We
also searched for the X-ray counterpart to PSR\, J0248+6021 with \chan\ but we
did not detect the pulsar down to a 3 flux limit of
erg cm s (0.3--10 keV). For all these pulsars, we compared the
optical flux upper limits with the extrapolations in the optical domain of the
-ray spectra and compared their multi-wavelength properties with those
of other -ray pulsars of comparable age.Comment: 12 pages, 5 figures, accepted for publication in MNRA
Shape of the spatial mode function of photons generated in noncollinear spontaneous parametric downconversion
We show experimentally how noncollinear geometries in spontaneous parametric
downconversion induce ellipticity of the shape of the spatial mode function.
The degree of ellipticity depends on the pump beam width, especially for highly
focused beams. We also discuss the ellipticity induced by the spectrum of the
pump beam
Comparison of electron injection and recombination on TiO2 nanoparticles and ZnO nanorods photosensitized by phthalocyanine
Titanium dioxide (TiO2) and zinc oxide (ZnO) semiconductors have similar band gap positions but TiO2performs better as an anode material in dye-sensitized solar cell applications. We compared two electrodes made of TiO2nanoparticles and ZnO nanorods sensitized by an aggregation-protected phthalocyanine derivative using ultrafast transient absorption spectroscopy. In agreement with previous studies, the primary electron injection is two times faster on TiO2, but contrary to the previous results the charge recombination is slower on ZnO. The latter could be due to morphology differences and the ability of the injected electrons to travel much further from the sensitizer cation in ZnO nanorodsSpanish MINECO (CTQ2017-85393-P) and the Comunidad de Madrid (FOTOCARBON, S2013/MIT-2841) are highly acknowledged. K.V. acknowledges the Doctoral Programme of Tampere University of Technology for the financial support
Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei
The influence on fusion of coupling to the breakup process is investigated
for reactions where at least one of the colliding nuclei has a sufficiently low
binding energy for breakup to become an important process. Elastic scattering,
excitation functions for sub-and near-barrier fusion cross sections, and
breakup yields are analyzed for Li+Co. Continuum-Discretized
Coupled-Channels (CDCC) calculations describe well the data at and above the
barrier. Elastic scattering with Li (as compared to Li) indicates
the significant role of breakup for weakly bound projectiles. A study of
He induced fusion reactions with a three-body CDCC method for the
He halo nucleus is presented. The relative importance of breakup and
bound-state structure effects on total fusion is discussed.Comment: 29 pages, 9 figure
Photoconductivity in AC-driven modulated two dimensional electron gas in a perpendicular magnetic field
In this work we study the microwave photoconductivity of a two-dimensional
electron system (2DES) in the presence of a magnetic field and a
two-dimensional modulation (2D). The model includes the microwave and Landau
contributions in a non-perturbative exact way, the periodic potential is
treated perturbatively. The Landau-Floquet states provide a convenient base
with respect to which the lattice potential becomes time-dependent, inducing
transitions between the Landau-Floquet levels. Based on this formalism, we
provide a Kubo-like formula that takes into account the oscillatory Floquet
structure of the problem. The total longitudinal conductivity and resistivity
exhibit strong oscillations, determined by with
the radiation frequency and the cyclotron frequency. The
oscillations follow a pattern with minima centered at , and maxima centered at , where , is a constant shift
and is the dominant multipole contribution. Negative resistance states
(NRS) develop as the electron mobility and the intensity of the microwave power
are increased. These NRS appear in a narrow window region of values of the
lattice parameter (), around , where is the magnetic
length. It is proposed that these phenomena may be observed in artificially
fabricated arrays of periodic scatterers at the interface of ultraclean
heterostructures.Comment: 20 pages, 8 figure
- …