25 research outputs found
Recommended from our members
Contactless ultrasonic treatment in direct chill casting
Uniformity of composition and grain refinement are desirable traits in the direct chill (DC) casting of non-ferrous alloy ingots. Ultrasonic treatment (UST) is a proven method for achieving grain refinement, with uniformity of composition achieved with additional melt stirring. The immersed sonotrode technique has been employed for this purpose to treat alloys both within the launder prior to DC casting, and directly in the sump. In both cases mixing is weak, relying on buoyancy driven flow or in the latter case on acoustic streaming. In this work we consider an alternative electromagnetic (EM) technique used directly in the caster, inducing ultrasonic vibrations coupled to strong melt stirring. This ‘contactless sonotrode’ technique relies on a kilohertz frequency induction coil lowered towards the melt with the frequency tuned to reach acoustic resonance within the melt pool. The technique developed with a combination of numerical models and physical experiments has been successfully used in batch to refine the microstructure and degas aluminum in a crucible. In this work we extend the numerical model, coupling electromagnetics, fluid flow, gas cavitation, heat transfer and solidification to examine the feasibility of use in the DC process. Simulations show that a consistent resonant mode is obtainable within a vigorously mixed melt pool, with high pressure regions at the Blake threshold required for cavitation localized to the liquidus temperature. It is assumed extreme conditions in the mushy zone due to cavitation would promote dendrite fragmentation and that, coupled with strong stirring, would lead to fine equiaxed grains
Recommended from our members
A process to produce a continuous liquid metal stream for gas atomisation
The heating and melting of reactive alloys in a cold crucible are considered in this study, to produce a continuous melt stream as a feed to a gas atomiser. A pre-heated rod of material enters the crucible at a rate equal to the amount of mass leaving as a liquid stream through the outlet. An induction coil is used to melt the contents of the crucible, which then pours out as a stream to enter a gas atomizer. The outlet nozzle may be controlled using an
induction valve, operating at a much higher AC frequency. The concept is tested through simulations using titanium and a nickel superalloy as model materials
Recommended from our members
Comparison of frequency domain and time domain methods for the numerical simulation of contactless ultrasonic cavitation
The use of a top-mounted electromagnetic induction coil has been demonstrated as a contactless alternative to traditional ultrasonic treatment (UST) techniques that use an immersed mechanical sonotrode for the treatment of metals in the liquid state. This method offers similar benefits to existing UST approaches, including degassing, grain refinement, and dispersion of nanoparticles, while also preventing contact contamination due to erosion of the sonotrode. Contactless treatment potentially extends UST to high temperature or reactive melts. Generally, the method relies on acoustic resonance to reach pressure levels suitable for inertial cavitation and as a result the active cavitation volume tends to lie deep in the melt rather than in the small volume surrounding the immersed sonotrode probe. Consequently, (i) with suitable tuning of the coil supply frequency for resonance, the treatment volume can be made arbitrarily large, (ii) the problem of shielding and pressure wave attenuation suffered by the immersed sonotrode is avoided. However, relying on acoustic resonance presents problems: (i) the emergence of bubbles alters the speed of sound, resonance is momentarily lost, and cavitation becomes intermittent, (ii) as
sound waves travel through and reflect on all the materials surrounding the melt, the sound characteristics of the crucible and supporting structures need to be carefully considered. The physics of cavitation coupled with this intermittent behaviour poses a challenge to sonotrode modelling orthodoxy, a problem we are trying to address in this publication. Two alternative approaches will be discussed, one of which is in the time domain and one in
the frequency domain, which couple the solution of a bubble dynamics solver with that of an acoustics solver, to
give an accurate prediction of the acoustic pressure generated by the induction coil. The time domain solver uses a novel algorithm to improve simulation time, by detecting an imminent bubble collapse and prescribing its subsequent behaviour, rather than directly solving a region that would normally require extremely small time
steps. This way, it is shown to predict intermittent cavitation. The frequency domain solver for the first time couples the nonlinear Helmholtz model used for studying cavitation, with a background source term for the contribution of Lorentz forces. It predicts comparable RMS pressures to the time domain solver, but not the
intermittent behaviour due to the underlying harmonic assumption. As further validation, the frequency domain method is also used to compare the generated acoustic pressure with that of traditional UST using a mechanical sonotrode
Controlling solute channel formation using magnetic fields
Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces generating additional flow fields. This thermoelectric (TE) magnetohydrodynamic (TEMHD) effect can impact on solute channel formation, via a mechanism recently drawing increasing attention. To investigate this phenomenon, we combined in situ synchrotron X-ray imaging and Parallel-Cellular-Automata-Lattice-Boltzmann based numerical simulations to study the characteristics of flow and solute transport under TEMHD. Observations suggest the macroscopic TEMHD flow appearing ahead of the solidification front, coupled with the microscopic TEMHD flow arising within the mushy zone are the primary mechanisms controlling plume migration and channel bias. Two TE regimes were revealed, each with distinctive mechanisms that dominate the flow. Further, we show that grain orientation modifies solute flow through anisotropic permeability. These insights led to a proposed strategy for producing solute channel-free solidification using a time-modulated magnetic field
Contactless ultrasonic cavitation in alloy melts
A high frequency tuned electromagnetic induction coil is used to induce ultrasonic pressure waves leading to cavitation in alloy melts. This presents an alternative ‘contactless’ approach to conventional immersed probe techniques. The method can potentially offer the same benefits of traditional ultrasonic treatment (UST) such as degassing, microstructure refinement and dispersion of particles, but avoids melt contamination due to probe erosion prevalent in immersed sonotrodes, and it can be used on higher temperature and reactive alloys. An added benefit is that the induction stirring produced by the coil, enables a larger melt treatment volume. Model simulations of the process are conducted using purpose-built software, coupling flow, heat transfer, sound and electromagnetic fields. Modelling results are compared against experiments carried out in a prototype installation. Results indicate strong melt stirring and evidence of cavitation accompanying acoustic resonance. Up to 63% of grain refinement was obtained in commercial purity (CP-Al) aluminium and a further 46% in CP-Al with added Al–5Ti–1B grain refiner
Fabrication of hollow polymer microstructures using dielectric and capillary forces
Electric Field Assisted Capillarity is a novel one-step process suitable for the fabrication of hollow polymer microstructures. The process, demonstrated to work experimentally on a microscale using Polydimethylsiloxane (PDMS), makes use of both the electrohydrodynamics of polymers subject to an applied voltage and the capillary force on the polymers caused by a low contact angle on a heavily wetted surface. Results of two-dimensional numerical simulations of the process are discussed in this paper for the special case of production of microfluidic channels. The paper investigates the effects of altering key parameters including the contact angle with the top mask, the polymer thickness and air gap, the permittivity of the polymer, the applied voltage and geometrical variations on the final morphology of the microstructure. The results from these simulations demonstrate that the capillary force caused by the contact angle has the greatest effect on the final shape of the polymer microstructures
Enhancement of mechanical properties of pure aluminium through contactless melt sonicating treatment
A new contactless ultrasonic sonotrode method was previously designed to provide cavitation conditions inside liquid metal. The oscillation of entrapped gas bubbles followed by their final collapse causes extreme pressure changes leading to de-agglomeration and the dispersion of oxide films. The forced wetting of particle surfaces and degassing are other mechanisms that are considered to be involved. Previous publications showed a significant decrease in grain size using this technique. In this paper, the authors extend this research to strength measurements and demonstrate an improvement in cast quality. Degassing effects are also interpreted to illustrate the main mechanisms involved in alloy strengthening. The mean values and Weibull analysis are presented where appropriate to complete the data. The test results on cast Al demonstrated a maximum of 48% grain refinement, a 28% increase in elongation compared to 16% for untreated material and up to 17% increase in ultimate tensile strength (UTS). Under conditions promoting degassing, the hydrogen content was reduced by 0.1 cm3/100 g
Recommended from our members
High-speed imaging of the ultrasonic deagglomeration of carbon nanotubes in water
Ultrasonic treatment is effective in deagglomerating and dispersing nanoparticles in various liquids. However, the exact deagglomeration mechanisms vary for different nanoparticle clusters, owing to different particle geometries and inter-particle adhesion forces. Here, the deagglomeration mechanisms and the influence of sonotrode amplitude during ultrasonication of multiwall carbon nanotubes in de-ionized water were studied by a combination of high-speed imaging and numerical modeling. Particle image velocimetry was applied to images with a higher field of view to calculate the average streaming speeds distribution. These data allowed direct comparison with modeling results. For images captured at higher frame rates and magnification, different patterns of deagglomeration were identified and categorized based on different stages of cavitation zone development and for regions inside or outside the cavitation zone. The results obtained and discussed in this paper can also be relevant to a wide range of carbonaceous and other high aspect ratio nanomaterials
KiDS+VIKING+GAMA:Testing semi-analytic models of galaxy evolution with galaxy-galaxy-galaxy lensing
Several semi-analytic models (SAMs) try to explain how galaxies form, evolve
and interact inside the dark matter large-scale structure. These SAMs can be
tested by comparing their predictions for galaxy-galaxy-galaxy-lensing (G3L),
which is weak gravitational lensing around galaxy pairs, with observations. We
evaluate the SAMs by Henriques et al. (2015; H15) and by Lagos et al. (2012;
L12), implemented in the Millennium Run, by comparing their predictions for G3L
to observations at smaller scales than previous studies and also for pairs of
lens galaxies from different populations. We compare the G3L signal predicted
by the SAMs to measurements in the overlap of the Galaxy And Mass Assembly
survey (GAMA), the Kilo-Degree Survey (KiDS), and the VISTA Kilo-degree
Infrared Galaxy survey (VIKING), splitting lens galaxies into two colour and
five stellar-mass samples. Using an improved G3L estimator, we measure the
three-point correlation of the matter distribution for mixed lens pairs with
galaxies from different samples, and unmixed lens pairs with galaxies from the
same sample. Predictions by the H15 SAM agree with the observations for all
colour-selected and all but one stellar-mass-selected sample with 95%
confidence. Deviations occur for lenses with stellar masses below
at scales below .
Predictions by the L12 SAM for stellar-mass selected samples and red galaxies
are significantly higher than observed, while the predicted signal for blue
galaxy pairs is too low. The L12 SAM predicts more pairs of small stellar-mass
and red galaxies than the H15 SAM and the observations, as well as fewer pairs
of blue galaxies. Likely explanations are different treatments of environmental
effects by the SAMs and different models of the initial mass function. We
conclude that G3L provides a stringent test for models of galaxy formation and
evolution.Comment: 14 pages, 8 figures, replaced with version accepted to Astronomy &
Astrophysics after considering referees comment