25 research outputs found

    Controlling solute channel formation using magnetic fields

    Get PDF
    Solute channel formation introduces compositional and microstructural variations in a range of processes, from metallic alloy solidification, to salt fingers in ocean and water reservoir flows. Applying an external magnetic field interacts with thermoelectric currents at solid/liquid interfaces generating additional flow fields. This thermoelectric (TE) magnetohydrodynamic (TEMHD) effect can impact on solute channel formation, via a mechanism recently drawing increasing attention. To investigate this phenomenon, we combined in situ synchrotron X-ray imaging and Parallel-Cellular-Automata-Lattice-Boltzmann based numerical simulations to study the characteristics of flow and solute transport under TEMHD. Observations suggest the macroscopic TEMHD flow appearing ahead of the solidification front, coupled with the microscopic TEMHD flow arising within the mushy zone are the primary mechanisms controlling plume migration and channel bias. Two TE regimes were revealed, each with distinctive mechanisms that dominate the flow. Further, we show that grain orientation modifies solute flow through anisotropic permeability. These insights led to a proposed strategy for producing solute channel-free solidification using a time-modulated magnetic field

    Contactless ultrasonic cavitation in alloy melts

    Get PDF
    A high frequency tuned electromagnetic induction coil is used to induce ultrasonic pressure waves leading to cavitation in alloy melts. This presents an alternative ‘contactless’ approach to conventional immersed probe techniques. The method can potentially offer the same benefits of traditional ultrasonic treatment (UST) such as degassing, microstructure refinement and dispersion of particles, but avoids melt contamination due to probe erosion prevalent in immersed sonotrodes, and it can be used on higher temperature and reactive alloys. An added benefit is that the induction stirring produced by the coil, enables a larger melt treatment volume. Model simulations of the process are conducted using purpose-built software, coupling flow, heat transfer, sound and electromagnetic fields. Modelling results are compared against experiments carried out in a prototype installation. Results indicate strong melt stirring and evidence of cavitation accompanying acoustic resonance. Up to 63% of grain refinement was obtained in commercial purity (CP-Al) aluminium and a further 46% in CP-Al with added Al–5Ti–1B grain refiner

    Fabrication of hollow polymer microstructures using dielectric and capillary forces

    Get PDF
    Electric Field Assisted Capillarity is a novel one-step process suitable for the fabrication of hollow polymer microstructures. The process, demonstrated to work experimentally on a microscale using Polydimethylsiloxane (PDMS), makes use of both the electrohydrodynamics of polymers subject to an applied voltage and the capillary force on the polymers caused by a low contact angle on a heavily wetted surface. Results of two-dimensional numerical simulations of the process are discussed in this paper for the special case of production of microfluidic channels. The paper investigates the effects of altering key parameters including the contact angle with the top mask, the polymer thickness and air gap, the permittivity of the polymer, the applied voltage and geometrical variations on the final morphology of the microstructure. The results from these simulations demonstrate that the capillary force caused by the contact angle has the greatest effect on the final shape of the polymer microstructures

    Enhancement of mechanical properties of pure aluminium through contactless melt sonicating treatment

    Get PDF
    A new contactless ultrasonic sonotrode method was previously designed to provide cavitation conditions inside liquid metal. The oscillation of entrapped gas bubbles followed by their final collapse causes extreme pressure changes leading to de-agglomeration and the dispersion of oxide films. The forced wetting of particle surfaces and degassing are other mechanisms that are considered to be involved. Previous publications showed a significant decrease in grain size using this technique. In this paper, the authors extend this research to strength measurements and demonstrate an improvement in cast quality. Degassing effects are also interpreted to illustrate the main mechanisms involved in alloy strengthening. The mean values and Weibull analysis are presented where appropriate to complete the data. The test results on cast Al demonstrated a maximum of 48% grain refinement, a 28% increase in elongation compared to 16% for untreated material and up to 17% increase in ultimate tensile strength (UTS). Under conditions promoting degassing, the hydrogen content was reduced by 0.1 cm3/100 g

    KiDS+VIKING+GAMA:Testing semi-analytic models of galaxy evolution with galaxy-galaxy-galaxy lensing

    Get PDF
    Several semi-analytic models (SAMs) try to explain how galaxies form, evolve and interact inside the dark matter large-scale structure. These SAMs can be tested by comparing their predictions for galaxy-galaxy-galaxy-lensing (G3L), which is weak gravitational lensing around galaxy pairs, with observations. We evaluate the SAMs by Henriques et al. (2015; H15) and by Lagos et al. (2012; L12), implemented in the Millennium Run, by comparing their predictions for G3L to observations at smaller scales than previous studies and also for pairs of lens galaxies from different populations. We compare the G3L signal predicted by the SAMs to measurements in the overlap of the Galaxy And Mass Assembly survey (GAMA), the Kilo-Degree Survey (KiDS), and the VISTA Kilo-degree Infrared Galaxy survey (VIKING), splitting lens galaxies into two colour and five stellar-mass samples. Using an improved G3L estimator, we measure the three-point correlation of the matter distribution for mixed lens pairs with galaxies from different samples, and unmixed lens pairs with galaxies from the same sample. Predictions by the H15 SAM agree with the observations for all colour-selected and all but one stellar-mass-selected sample with 95% confidence. Deviations occur for lenses with stellar masses below 9.5h2M9.5h^{-2}\mathrm{M}_\odot at scales below 0.2h1Mpc0.2h^{-1}\mathrm{Mpc}. Predictions by the L12 SAM for stellar-mass selected samples and red galaxies are significantly higher than observed, while the predicted signal for blue galaxy pairs is too low. The L12 SAM predicts more pairs of small stellar-mass and red galaxies than the H15 SAM and the observations, as well as fewer pairs of blue galaxies. Likely explanations are different treatments of environmental effects by the SAMs and different models of the initial mass function. We conclude that G3L provides a stringent test for models of galaxy formation and evolution.Comment: 14 pages, 8 figures, replaced with version accepted to Astronomy & Astrophysics after considering referees comment

    The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    Full text link
    corecore