39 research outputs found

    International initiative for a curated SDHB variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma

    Get PDF
    Adrenal gland diseases; Databases; Genetic variationEnfermedades de las glándulas suprarrenales; Bases de datos; Variación genéticaMalalties de les glàndules suprarenals; Bases de dades; Variació genèticaBackground SDHB is one of the major genes predisposing to paraganglioma/pheochromocytoma (PPGL). Identifying pathogenic SDHB variants in patients with PPGL is essential to the management of patients and relatives due to the increased risk of recurrences, metastases and the emergence of non-PPGL tumours. In this context, the ‘NGS and PPGL (NGSnPPGL) Study Group’ initiated an international effort to collect, annotate and classify SDHB variants and to provide an accurate, expert-curated and freely available SDHB variant database. Methods A total of 223 distinct SDHB variants from 737 patients were collected worldwide. Using multiple criteria, each variant was first classified according to a 5-tier grouping based on American College of Medical Genetics and NGSnPPGL standardised recommendations and was then manually reviewed by a panel of experts in the field. Results This multistep process resulted in 23 benign/likely benign, 149 pathogenic/likely pathogenic variants and 51 variants of unknown significance (VUS). Expert curation reduced by half the number of variants initially classified as VUS. Variant classifications are publicly accessible via the Leiden Open Variation Database system (https://databases.lovd.nl/shared/genes/SDHB). Conclusion This international initiative by a panel of experts allowed us to establish a consensus classification for 223 SDHB variants that should be used as a routine tool by geneticists in charge of PPGL laboratory diagnosis. This accurate classification of SDHB genetic variants will help to clarify the diagnosis of hereditary PPGL and to improve the clinical care of patients and relatives with PPGL.This work was supported in part by a salary grant to NB from Cancer Research for PErsonalized Medicine (CARPEM). ERM acknowledges funding from the European Research Council (Advanced Researcher Award), NIHR (Senior Investigator Award and Cambridge NIHR Biomedical Research Centre) and Cancer Research UK Cambridge Cancer Centre. The University of Cambridge has received salary support in respect of ERM from the NHS in the East of England through the Clinical Academic Reserve. PLD receives support from the National Institutes of Health (NIH)-National Institute of General Medical Science (NIGMS) GM114102, NIH-National Center for Advancing Translational Science (NCATS) Clinical Translational Science Award (CTSA) UL1 TR001120 and UL1 TR002645, the Mays Cancer Center NIH-National Cancer Institute (NCI) P30 CA54174, Alex’s Lemonade Childhood Foundation, with support from Northwest Mutual and Flashes of Hope, and University of Texas Health SystemSTARS Award. RAT holds a Miguel Servet-I research contract by Institute of Health Carlos III (ISCIII) of the Ministry of Economy (CP17/00199) and Competitiveness; is supported by an Olga Torres Foundation Emerging researcher grant and by the Swiss Bridge Award for cancer immunotherapy research; and received research grants from BeiGene, Novartis and AstraZeneca. Cancer Genetics, Kolling Institute, Sydney acknowledges support from the Hillcrest Foundation (Perpetual Trustees). JPB in Leiden, The Netherlands acknowledges support from the Paradifference Foundation. MR is supported by the Instituto de Salud Carlos III (ISCIII), Acción Estratégica en Salud, cofounded by FEDER (grant number PI17/01796)

    Sunitinib in the therapy of malignant paragangliomas: report on the efficacy in a SDHB mutation carrier and review of the literature

    Get PDF
    SUMMARY Metastatic pheochromocytomas (PHEOs) and paragangliomas (sPGLs) are rare neural crest-derived tumors with a poor prognosis. About 50% of them are due to germ-line mutations of the SDHB gene. At present, there is no cure for these tumors. Their therapy is palliative and represented by different options among which antiangiogenic drugs, like sunitinib, have been hypothesized to be effective especially in malignant SDHB mutated tumors. We report the effects of sunitinib therapy in a SDHB mutation carrier affected by a malignant sPGL. During 101 weeks of therapy at different doses, sunitinib was able to cause a partial response and then a stable disease for a total of 78 weeks. This favorable response is the longest, out of the 35 so far reported in the literature, registered in a patient treated exclusively with sunitinib but, similarly to the other responses, the effect was limited in time. From our analysis of the scanty data present in the literature, the effect of sunitinib does not seem to be different among wild-type patients and those carrying a cluster 1 germ-line mutation. Sunitinib seems able to slow the disease progression in some patients with malignant PHEO/PGL and therefore may represent a therapeutic option, although randomized controlled studies are needed to assess its efficacy definitively in the treatment of these aggressive tumors

    Rosiglitazone Inhibits Adrenocortical Cancer Cell Proliferation by Interfering with the IGF-IR Intracellular Signaling

    Get PDF
    Rosiglitazone (RGZ), a thiazolidinedione ligand of the peroxisome proliferator-activated receptor (PPAR)-γ, has been recently described as possessing antitumoral properties. We investigated RGZ effect on cell proliferation in two cell line models (SW13 and H295R) of human adrenocortical carcinoma (ACC) and its interaction with the signaling pathways of the activated IGF-I receptor (IGF-IR). We demonstrate a high expression of IGF-IR in the two cell lines and in ACC. Cell proliferation is stimulated by IGF-I in a dose- and time-dependent manner and is inhibited by RGZ. The analysis of the main intracellular signaling pathways downstream of the activated IGF-IR, phosphatidyl inositol 3-kinase (PI3K)-Akt, and extracellular signal-regulated kinase (ERK1/2) cascades reveals that RGZ rapidly interferes with the Akt and ERK1/2 phosphorylation/activation which mediates IGF-I stimulated proliferation. In conclusion, our results suggest that RGZ exerts an inhibitory effect on human ACC cell proliferation by interfering with the PI3K/Akt and ERK1/2 signaling pathways downstream of the activated IGF-IR

    A Cluster of Three Single Nucleotide Polymorphisms in the 3′-Untranslated Region of Human Glycoprotein PC-1 Gene Stabilizes PC-1 mRNA and Is Associated With Increased PC-1 Protein Content and Insulin Resistance–Related Abnormalities

    Get PDF
    Glycoprotein PC-1 inhibits insulin signaling and, when overexpressed, plays a role in human insulin resistance. Mechanisms of PC-1 overexpression are unknown. We have identified a haplotype in the 3′-untranslated region of the PC-1 gene that may modulate PC-1 expression and confer an increased risk for insulin resistance. Individuals from Sicily, Italy, carrying the "P" haplotype (i.e., a cluster of three single nucleotide polymorphisms: G2897A, G2906C, and C2948T) were at higher risk (P < 0.01) for insulin resistance and had higher (P < 0.05) levels of plasma glucose and insulin during an oral glucose tolerance test and higher levels of cholesterol, HDL cholesterol, and systolic blood pressure. They also had higher (P < 0.05–0.01) PC-1 protein content in both skeletal muscle and cultured skin fibroblasts. In CHO cells transfected with either P or wild-type cDNA, specific PC-1 mRNA half-life was increased for those transfected with P (t/2 = 3.73 ± 1.0 vs. 1.57 ± 0.2 h; P < 0.01). In a population of different ethnicity (Gargano, East Coast Italy), patients with type 2 diabetes (the most likely clinical outcome of insulin resistance) had a higher P haplotype frequency than healthy control subjects (7.8 vs. 1.5%, P < 0.01), thus replicating the association between the P allele and the insulin resistance–related abnormalities observed among Sicilians. In conclusion, we have identified a possible molecular mechanism for PC-1 overexpression that confers an increased risk for insulin resistance–related abnormalities

    Stimulated Expression of CXCL12 in Adrenocortical Carcinoma by the PPARgamma Ligand Rosiglitazone Impairs Cancer Progression

    Full text link
    Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis when metastatic and scarce treatment options in the advanced stages. In solid tumors, the chemokine CXCL12/CXCR4 axis is involved in the metastatic process. We demonstrated that the human adrenocortex expressed CXCL12 and its cognate receptors CXCR4 and CXCR7, not only in physiological conditions, but also in ACC, where the receptors' expression was higher and the CXCL12 expression was lower than in the physiological conditions. In a small pilot cohort of 22 ACC patients, CXCL12 negatively correlated with tumor size, stage, Weiss score, necrosis, and mitotic activity. In a Kaplan-Meier analysis, the CXCL12 tumor expression significantly predicted disease-free, progression-free, and overall survival. In vitro treatment of the primary ACC H295R and of the metastatic MUC-1 cell line with the PPARγ-ligand rosiglitazone (RGZ) dose-dependently reduced proliferation, resulting in a significant increase in CXCL12 and a decrease in its receptors in the H295R cells only, with no effect on the MUC-1 levels. In ACC mouse xenografts, tumor growth was inhibited by the RGZ treatment before tumor development (prevention-setting) and once the tumor had grown (therapeutic-setting), similarly to mitotane (MTT). This inhibition was associated with a significant suppression of the tumor CXCR4/CXCR7 and the stimulation of human CXCL12 expression. Tumor growth correlated inversely with CXCL12 and positively with CXCR4 expression, suggesting that local CXCL12 may impair the primary tumor cell response to the ligand gradient that may contribute to driving the tumor progression. These findings indicate that CXCL12/CXCR4 may constitute a potential target for anti-cancer agents such as rosiglitazone in the treatment of ACC

    International initiative for a curated SDHB variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma

    Get PDF
    Funder: Cancer Research UK Cambridge Cancer CentreBackground: SDHB is one of the major genes predisposing to paraganglioma/pheochromocytoma (PPGL). Identifying pathogenic SDHB variants in patients with PPGL is essential to the management of patients and relatives due to the increased risk of recurrences, metastases and the emergence of non-PPGL tumours. In this context, the ‘NGS and PPGL (NGSnPPGL) Study Group’ initiated an international effort to collect, annotate and classify SDHB variants and to provide an accurate, expert-curated and freely available SDHB variant database. Methods: A total of 223 distinct SDHB variants from 737 patients were collected worldwide. Using multiple criteria, each variant was first classified according to a 5-tier grouping based on American College of Medical Genetics and NGSnPPGL standardised recommendations and was then manually reviewed by a panel of experts in the field. Results: This multistep process resulted in 23 benign/likely benign, 149 pathogenic/likely pathogenic variants and 51 variants of unknown significance (VUS). Expert curation reduced by half the number of variants initially classified as VUS. Variant classifications are publicly accessible via the Leiden Open Variation Database system (https://databases.lovd.nl/shared/genes/SDHB). Conclusion: This international initiative by a panel of experts allowed us to establish a consensus classification for 223 SDHB variants that should be used as a routine tool by geneticists in charge of PPGL laboratory diagnosis. This accurate classification of SDHB genetic variants will help to clarify the diagnosis of hereditary PPGL and to improve the clinical care of patients and relatives with PPGL

    Patient affected by neurofibromatosis type 1 and thyroid C-cell hyperplasia harboring pathogenic germ-line mutations in both <i>NF1</i> and <i>RET</i> genes

    No full text
    Neurofibromatosis type 1 (NF1) is a rare autosomal dominant disease with an estimated incidence of 1 in 3000/3500 live births. NF1 is caused by a mutation in a genewhich encodes a protein known as neurofibromin. In up to 5% of cases, NF1 is associated with pheochromocytomas. RET proto-oncogene encodes a member of the receptor tyrosine kinase family involved in the normal development or the neoplastic growth of neural crest cell lineages. Germ-line RET mutations account for cases of Multiple Endocrine Neoplasia type 2 (MEN2), an autosomal dominant genetic syndrome where medullary thyroid carcinoma (MTC) is the major and more clinically severe feature, with nearly complete penetrance. C-cell hyperplasia (CCH) is described inMEN2 patients, and it has been implicated as the precursor of in situ MTC. Patients with RET mutations develop pheochromocytomas in 50% of cases. Rarely, patientswith NF1 have been found to present, in addition to the NF1 clinical picture, other lesions, such as parathyroid hyperplasia/adenoma and/or medullary thyroid carcinoma. In spite of the presence of these MEN2 lesions, in none of these patients mutations of gene RET have been found so far. In this report, we describe the first case of a patient affected by a germ-line mutation in both NF1 and RET genes.</br
    corecore