2,155 research outputs found

    Environmental impact caused by wild ungulates in protected areas

    Get PDF
    Protected areas play a crucial role for conservation of natural habilats and ecosystems. Protecting biodiversity means maintaining in good condition ecological processes in order to ensure a good state of harmony between natural resources and environmental conservation. It is known that one of the major threats of the Conservation is the presence of alien or invasive species, especial/y if they are introduced in protected areas. The International Union for Conservation of Nature (IUCN) writes in the list of the 100 invasive species the wild boar (Sus scrofa L.) and the goat (Capra hircus L.). These ungulates represent a serious threat for natural ecosystems because they are able to alter natural habilats reducing biodiversity. The primary aim of this study is to evaluate some aspects connected with environmental relationships mainly between flora and fauna in protected areas, focusing on wild boars and feral goats. Secondly, it is analysed "Human dimension" aspect caused by presence and damage of wild animals finked to damage to crops and to dry stone wall supporting the typical cultivated terraces. To reach our goal we use as a case study the Portofino Natural Park in North-West Italy, because it houses one of the largest biodiversity concentration in the Mediterranean area. In this protected area the wild boar is the most invasive between the two studied animai species, because of soil damages that influence hydro-geological balance of territory. Finally, this species can quickly increase its population for the high prolificacy and low biological and predator mortality

    CarPatch: A Synthetic Benchmark for Radiance Field Evaluation on Vehicle Components

    Full text link
    Neural Radiance Fields (NeRFs) have gained widespread recognition as a highly effective technique for representing 3D reconstructions of objects and scenes derived from sets of images. Despite their efficiency, NeRF models can pose challenges in certain scenarios such as vehicle inspection, where the lack of sufficient data or the presence of challenging elements (e.g. reflections) strongly impact the accuracy of the reconstruction. To this aim, we introduce CarPatch, a novel synthetic benchmark of vehicles. In addition to a set of images annotated with their intrinsic and extrinsic camera parameters, the corresponding depth maps and semantic segmentation masks have been generated for each view. Global and part-based metrics have been defined and used to evaluate, compare, and better characterize some state-of-the-art techniques. The dataset is publicly released at https://aimagelab.ing.unimore.it/go/carpatch and can be used as an evaluation guide and as a baseline for future work on this challenging topic.Comment: Accepted at ICIAP202

    c-KIT receptor expression is strictly associated with the biological behaviour of thyroid nodules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A large amount of information has been collected on the molecular tumorigenesis of thyroid cancer. A low expression of c-KIT gene has been reported during the transformation of normal thyroid epithelium to papillary carcinoma suggesting a possible role of the gene in the differentiation of thyroid tissue rather than in the proliferation. The initial presentation of thyroid carcinoma is through a nodule and the best way nowadays to evaluate it is by fine-needle aspiration (FNA). However many thyroid FNAs are not definitively benign or malignant, yielding an indeterminate or suspicious diagnosis which ranges from 10 to 25% of FNAs. BRAF mutational analysis is commonly used to assess the malignancy of thyroid nodules but unfortunately it still leaves indeterminate diagnoses. The development of molecular initial diagnostic tests for evaluating a thyroid nodule is needed in order to define optimal surgical approach for patients with uncertain diagnosis pre- and intra-operatively.</p> <p>Methods</p> <p>In this study we extracted RNA from 82 FNA smears, 46 malignant and 36 benign at the histology, in order to evaluate by quantitative Real Time PCR the expression levels of c-KIT gene.</p> <p>Results</p> <p>We have found a highly preferential decrease rather than increase in transcript of c-KIT in malignant thyroid lesions compared to the benign ones. To explore the diagnostic utility of c-KIT expression in thyroid nodules, its expression values were divided in four arbitrarily defined classes, with class I characterized by the complete silencing of the gene. Class I and IV represented the two most informative groups, with 100% of the samples found malignant or benign respectively. The molecular analysis was proven by ROC (receiver operating characteristic) analysis to be highly specific and sensitive improving the cytological diagnostic accuracy of 15%.</p> <p>Conclusion</p> <p>We propose the use of BRAF test (after uncertain cytological diagnosis) to assess the malignancy of thyroid nodules at first, then the use of the c-KIT expression to ultimately assess the diagnosis of the nodules that otherwise would remain suspicious. The c-KIT expression-based classification is highly accurate and may provide a tool to overcome the difficulties in today's preoperative diagnosis of thyroid suspicious malignancies.</p

    Phonon-Mediated KIDs as Light Detectors for Rare-Event Search: The CALDER Project

    Get PDF
    Background suppression plays a crucial role in experiments searching for rare events, like neutrino-less double beta decay (0 ν\nu DBD) and dark matter. Large mass bolometers that are among the most competitive devices in this field would largely benefit from the development of ultrasensitive light detectors, as the combined readout of the bolometric and light signals enables the particle identification. The CALDER collaboration is developing cryogenic light detectors that will match the requirements of next generation experiments: noise lower than 20 eV RMS, large active area (several cm 2^{2} ), wide temperature range of operation, and ease in fabricating and operating a thousand of detectors. For this purpose, we are exploiting the excellent energy resolution and the natural multiplexed read-out provided by kinetic inductance detectors (KIDs). These devices can be operated in a phonon-mediated approach, in which KIDs are coupled to a large insulating substrate in order to increase the active surface from a few mm 2^{2} to 25 cm 2^{2} . Our current best prototype, based on aluminum LEKIDs, reached a baseline sensitivity of 80 eV with an overall efficiency of about 20 %

    Future perspectives in melanoma research: meeting report from the "Melanoma Bridge";: Napoli, December 3rd-6th 2014.

    Get PDF
    The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma

    Insight from an Italian Delphi Consensus on EVAR feasibility outside the instruction for use: the SAFE EVAR Study

    Get PDF
    BACKGROUND: The SAfety and FEasibility of standard EVAR outside the instruction for use (SAFE-EVAR) Study was designed to define the attitude of Italian vascular surgeons towards the use of standard endovascular repair (EVAR) for infrarenal abdominal aortic aneurysm (AAA) outside the instruction for use (IFU) through a Delphi consensus endorsed by the Italian Society of Vascular and Endovascular Surgery (Societa Italiana di Chirurgia Vascolare ed Endovascolare - SICVE). METHODS: A questionnaire consisting of 26 statements was developed, validated by an 18 -member Advisory Board, and then sent to 600 Italian vascular surgeons. The Delphi process was structured in three subsequent rounds which took place between April and June 2023. In the first two rounds, respondents could indicate one of the following five degrees of agreement: 1) strongly agree; 2) partially agree; 3) neither agree nor disagree; 4) partially disagree; 5) strongly disagree; while in the third round only three different choices were proposed: 1) agree; 2) neither agree nor disagree; 3) disagree. We considered the consensus reached when &gt;70% of respondents agreed on one of the options. After the conclusion of each round, a report describing the percentage distribution of the answers was sent to all the participants. RESULTS: Two -hundred -forty-four (40.6%) Italian Vascular Surgeons agreed to participate the first round of the Delphi Consensus; the second and the third rounds of the Delphi collected 230 responders (94.3% of the first -round responders). Four statements (15.4%) reached a consensus in the first rounds. Among the 22 remaining statements, one more consensus (3.8%) was achieved in the second round. Finally, seven more statements (26.9%) reached a consensus in the simplified last round. Globally, a consensus was reached for almost half of the proposed statements (46.1%). CONCLUSIONS: The relatively low consensus rate obtained in this Delphi seems to confirm the discrepancy between Guideline recommendations and daily clinical practice. The data collected could represent the source for a possible guidelines' revision and the proposal of specific Good Practice Points in all those aspects with only little evidence available

    Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    Get PDF
    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated tt\mathrm{t}\overline{\mathrm{t}} events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV)

    Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton–proton collisions at 13 TeV

    Get PDF
    info:eu-repo/semantics/publishe

    Evidence for the Higgs boson decay to a bottom quark–antiquark pair

    Get PDF
    info:eu-repo/semantics/publishe
    corecore