5 research outputs found

    Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport

    No full text
    Brown and beige adipocytes combust nutrients for thermogenesis and through their metabolic activity decrease pro-atherogenic remnant lipoproteins in hyperlipidemic mice. However, whether the activation of thermogenic adipocytes affects the metabolism and anti-atherogenic properties of high-density lipoproteins (HDL) is unknown. Here, we report a reduction in atherosclerosis in response to pharmacological stimulation of thermogenesis linked to increased HDL levels in APOE*3-Leiden.CETP mice. Both cold-induced and pharmacological thermogenic activation enhances HDL remodelling, which is associated with specific lipidomic changes in mouse and human HDL. Furthermore, thermogenic stimulation promotes HDL-cholesterol clearance and increases macrophage-to-faeces reverse cholesterol transport in mice. Mechanistically, we show that intravascular lipolysis by adipocyte lipoprotein lipase and hepatic uptake of HDL by scavenger receptor B-I are the driving forces of HDL-cholesterol disposal in liver. Our findings corroborate the notion that high metabolic activity of thermogenic adipocytes confers atheroprotective properties via increased systemic cholesterol flux through the HDL compartment

    Liver TAG Transiently Decreases While PL n-3 and n-6 Fatty Acids are Persistently Elevated in Insulin Resistant Mice

    No full text
    Changes in fatty acid metabolism associated with insulin resistance have been described in rats and humans but have not been well characterized in the frequently used mouse model of diet-induced obesity. To analyse the early phase as well as established insulin resistance, C57BL/6 mice were placed for 1 or 16 weeks on a high fat diet (1w-HFD, 16w-HFD). Endocrine and metabolic parameters indicated that 1w-HFD mice showed a moderate but significant induction of insulin resistance while 16w-HFD mice exhibited profound obesity-associated insulin resistance and dyslipidemias. Significant alterations in fatty acid composition were observed in plasma and liver in both groups. Liver phospholipid-associated arachidonate and docosahexaenoate were increased in both 1w-HFD and 16w-HFD mice, possibly due to increased expression of the desaturases Fads1 and Fads2. Unexpectedly, SCD1 activity and gene expression in liver were decreased in the 1w-HFD group accompanied by diminished total hepatic lipid levels, while they were increased in chronically fed mice. Our data indicate that the early phase of HFD-induced insulin resistance is not associated with elevated liver lipid concentration. Furthermore, the early and persistent rise of arachidonate and docosahexaenoate indicates that insulin resistance is not due to insufficient availability (or concentrations) of polyunsaturated fatty acids as postulated previously
    corecore