659 research outputs found
Monte Carlo Performance Studies for the Site Selection of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) represents the next generation of
ground-based instruments for very-high-energy (VHE) gamma-ray astronomy, aimed
at improving on the sensitivity of current-generation experiments by an order
of magnitude and providing coverage over four decades of energy. The current
CTA design consists of two arrays of tens of imaging atmospheric Cherenkov
telescopes, comprising Small, Medium and Large-Sized Telescopes, with one array
located in each of the Northern and Southern Hemispheres. To study the effect
of the site choice on the overall \gls{cta} performance and support the site
evaluation process, detailed Monte Carlo simulations have been performed. These
results show the impact of different site-related attributes such as altitude,
night-sky background and local geomagnetic field on CTA performance for the
observation of VHE gamma rays.Comment: 34 pages, 11 figures, Accepted for publication in AP
Fabrication and Results of the First MgB2 Round Coil Superferric Magnet at LASA
The LASA Laboratory (INFN, Milan) is working in the High Luminosity LHC program to develop, in collaboration with CERN, six different types of High Order corrector magnets. In this framework, in parallel with a conventional design of superferric magnets with LTS conductor, the LASA is focusing on the research of new superconducting materials which may have applications in particle accelerator magnets. To this purpose, LASA is developing a new type of superferric magnet suitable to arbitrary multipole order, called Round Coil Superferric Magnets (RCSM). The iron yoke shaped with an arbitrary number of poles is able to create the desired harmonic component using only one single round coil with a large bending radius suitable for very strain-sensitive superconductors. The electromagnetic design of a sextupole configuration of the magnet and the production of the first superconducting MgB2 round coil prototype have been already presented. In this paper, we expose the optimization of the iron yoke and polar expansions assembly of the first magnet semi-module prototype. The results of the whole powering test are described in detail and the analysis of the magnetic performances are compared with those of classical superferric correctors
Betaine Treatment Attenuates Chronic Ethanol-Induced Hepatic Steatosis and Alterations to the Mitochondrial Respiratory Chain Proteome
Introduction. Mitochondrial damage and disruption in oxidative phosphorylation contributes to the pathogenesis of alcoholic liver injury. Herein, we tested the hypothesis that the hepatoprotective actions of betaine against alcoholic liver injury occur at the level of the mitochondrial proteome. Methods. Male Wister rats were pair-fed control or ethanol-containing liquid diets supplemented with or without betaine (10âmg/mL) for 4-5 wks. Liver was examined for triglyceride accumulation, levels of methionine cycle metabolites, and alterations in mitochondrial proteins. Results. Chronic ethanol ingestion resulted in triglyceride accumulation which was attenuated in the ethanol plus betaine group. Blue native gel electrophoresis (BN-PAGE) revealed significant decreases in the content of the intact oxidative phosphorylation complexes in mitochondria from ethanol-fed animals. The alcohol-dependent loss in many of the low molecular weight oxidative phosphorylation proteins was prevented by betaine supplementation. This protection by betaine was associated with normalization of SAMâ:âS-adenosylhomocysteine (SAH) ratios and the attenuation of the ethanol-induced increase in inducible nitric oxide synthase and nitric oxide generation in the liver. Discussion/Conclusion. In summary, betaine attenuates alcoholic steatosis and alterations to the oxidative phosphorylation system. Therefore, preservation of mitochondrial function may be another key molecular mechanism responsible for betaine hepatoprotection
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85° to +20°, in an energy range from 1017.3âeV to 1018.5âeV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06âeVâcm-2âs-1, and no celestial direction exceeds 0.25âeVâcm-2âs-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.CNPqFAPESPFAPERJFINEPMCTEntre outra
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory
The azimuthal asymmetry in the risetime of signals in Auger surface detector
stations is a source of information on shower development. The azimuthal
asymmetry is due to a combination of the longitudinal evolution of the shower
and geometrical effects related to the angles of incidence of the particles
into the detectors. The magnitude of the effect depends upon the zenith angle
and state of development of the shower and thus provides a novel observable,
, sensitive to the mass composition of cosmic rays
above eV. By comparing measurements with predictions from
shower simulations, we find for both of our adopted models of hadronic physics
(QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass
increases slowly with energy, as has been inferred from other studies. However,
the mass estimates are dependent on the shower model and on the range of
distance from the shower core selected. Thus the method has uncovered further
deficiencies in our understanding of shower modelling that must be resolved
before the mass composition can be inferred from .Comment: Replaced with published version. Added journal reference and DO
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
A search for point sources of EeV photons
Measurements of air showers made using the hybrid technique developed with
the fluorescence and surface detectors of the Pierre Auger Observatory allow a
sensitive search for point sources of EeV photons anywhere in the exposed sky.
A multivariate analysis reduces the background of hadronic cosmic rays. The
search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an
energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been
detected. An upper limit on the photon flux has been derived for every
direction. The mean value of the energy flux limit that results from this,
assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial
direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in
which EeV cosmic ray protons are emitted by non-transient sources in the
Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical
Journa
- âŠ