3,138 research outputs found

    Crossing conditions in coupled cluster theory

    Full text link
    We derive the crossing conditions at conical intersections between electronic states in coupled cluster theory, and show that if the coupled cluster Jacobian matrix is nondefective, two (three) independent conditions are correctly placed on the nuclear degrees of freedom for an inherently real (complex) Hamiltonian. Calculations using coupled cluster theory on an 21A′/31A′2 {^{1}}A' / 3 {^{1}}A' conical intersection in hypofluorous acid illustrate the nonphysical artifacts associated with defects at accidental same-symmetry intersections. In particular, the observed intersection seam is folded about a space of the correct dimensionality, indicating that minor modifications to the theory are required for it to provide a correct description of conical intersections in general. We find that an accidental symmetry allowed 11A"/21A"1 {^{1}}A" / 2 {^{1}}A" intersection in hydrogen sulfide is properly described, showing no artifacts as well as linearity of the energy gap to first order in the branching plane.Comment: 9 pages and 4 figure

    Tensor hypercontraction: A universal technique for the resolution of matrix elements of local, finite-range NN-body potentials in many-body quantum problems

    Full text link
    Configuration-space matrix elements of N-body potentials arise naturally and ubiquitously in the Ritz-Galerkin solution of many-body quantum problems. For the common specialization of local, finite-range potentials, we develop the eXact Tensor HyperContraction (X-THC) method, which provides a quantized renormalization of the coordinate-space form of the N-body potential, allowing for a highly separable tensor factorization of the configuration-space matrix elements. This representation allows for substantial computational savings in chemical, atomic, and nuclear physics simulations, particularly with respect to difficult "exchange-like" contractions.Comment: Third version of the manuscript after referee's comments. In press in PRL. Main text: 4 pages, 2 figures, 1 table; Supplemental material (also included): 14 pages, 2 figures, 2 table

    Are Hummingbirds Facultatively Ammonotelic? Nitrogen Excretion and Requirements as a Function of Body Size

    Full text link
    Most birds are uricotelic. An exception to this rule may be nectar-feeding birds, which excrete significant amounts of ammonia under certain conditions. Although ammonia is toxic, because it is highly water soluble its excretion may be facilitated in animals that ingest and excrete large amounts of water. Birdpollinated plants secrete carbohydrate- and water-rich floral nectars that contain exceedingly little protein. Thus, nectarfeeding birds are faced with the dual challenge of meeting nitrogen requirements while disposing of large amounts of water. The peculiar diet of nectar-feeding birds suggests two hypotheses: (1) these birds must have low protein requirements, and (2) when they ingest large quantities of water their primary nitrogen excretion product may be ammonia. To test these hypotheses, we measured maintenance nitrogen requirements (MNR) and total endogenous nitrogen losses (TENL) in three hummingbird species (Archilochus alexandri, Eugenes fulgens, and Lampornis clemenciae) fed on diets with varying sugar, protein, and water content. We also quantified the form in which the by-products of nitrogen metabolism were excreted. The MNR and TENL of the hummingbirds examined were exceptionally low. However, no birds excreted more than 50% of nitrogen as ammonia or more nitrogen as ammonia than urates. Furthermore, ammonia excretion was not influenced by either water or protein intake. The smallest species (A. alexandri) excreted a significantly greater proportion (125%) of their nitrogenous wastes as ammonia than the larger hummingbirds (≈4%). Our results support the hypothesis that nectar-feeding birds have low protein requirements but cast doubt on the notion that they are facultatively ammonotelic. Our data also hint at a possible size-dependent dichotomy in hummingbirds, with higher ammonia excretion in smaller species. Differences in proportionate water loads and/or postrenal modification of urine may explain this dichotomy

    Diffractive imaging of dissociation and ground state dynamics in a complex molecule

    Get PDF
    We have investigated the structural dynamics in photoexcited 1,2-diiodotetrafluoroethane molecules (C2F4I2) in the gas phase experimentally using ultrafast electron diffraction and theoretically using FOMO-CASCI excited state dynamics simulations. The molecules are excited by an ultra-violet femtosecond laser pulse to a state characterized by a transition from the iodine 5p orbital to a mixed 5p|| hole and CF2 antibonding orbital, which results in the cleavage of one of the carbon-iodine bonds. We have observed, with sub-Angstrom resolution, the motion of the nuclear wavepacket of the dissociating iodine atom followed by coherent vibrations in the electronic ground state of the C2F4I radical. The radical reaches a stable classical (non-bridged) structure in less than 200 fs.Comment: 13 pages, 11 figure
    • …
    corecore