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Putting Photomechanical Switches to Work: An Ab Initio Multiple 
Spawning Study of Donor Acceptor Stenhouse Adducts

D. M. Sanchez,1,2 U. Raucci,1,2 K. N. Ferreras,1,2 and Todd J. Martínez1,2,*

1SLAC National Accelerator Laboratory, Menlo Park, USA.
2Department of Chemistry and The PULSE Institute, Stanford University, Stanford, USA. 

Abstract: Photomechanical switches are light sensitive molecules capable of transducing the 
energy of a photon into mechanical work via photodynamics. In this letter, we present the first 
atomistic investigation of the photodynamics of a novel class of photochromes called Donor-
Accepter Stenhouse Adducts (DASA) using state-of-the-art ab-initio Multiple Spawning 
interfaced with State-Averaged Complete Active Space Self-Consistent Field Theory. 
Understanding the Z/E photoisomerization mechanism in DASAs at the molecular level is 
crucial in designing new derivatives with improved photo-switching capabilities. Our dynamics 
simulations show that the actinic step is comprised of competing nonradiative relaxation 
pathways that collectively contribute to DASAs’ low (21% in Toluene) photoisomerization 
quantum yield. Furthermore, we highlight the important role the intramolecular hydrogen bond 
plays in the selectivity of photoisomerization in DASAs, identifying it as a possible structural 
element to tune DASA properties. Our fully ab initio simulations reveal the key degrees of 
freedom involved in the actinic step, paving the way for the rational design of new generations of 
DASAs with improved quantum yield and efficiency.

Keywords: Photoisomerization, Nonadiabatic Dynamics, Excited State Proton Transfer, Ab 
Initio Multiple Spawning

* Corresponding author. Email: toddjmartinez@gmail.com
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Extracting mechanical work from photoinduced processes has proven to be a difficult 

task involving combined efforts between different subfields of chemistry, physics, and 

engineering. In recent years, the focus of the photomechanical community has been to design 

unique families of photo-switches, responsible for converting incident light in the ultraviolet 

(UV) region into mechanical work via large macroscopic shape changes.1-7 These macroscale 

deformations of materials start at the molecular level on the picosecond or faster timescales with 

the absorption of incident light in the ultraviolet or visible (UV-Vis) region. Several families of 

photo-switches capable of undergoing such processes have been proposed in literature,8-11  but all 

suffer from some form of photo/thermal instability, issues regarding polarity, solubility, or 

suboptimal excited-state features (i.e. absorption wavelength, lifetime, quantum yield). For 

example, spiropyran and diarylethene derivatives have shown small fatigue resistance and 

photostability,12-13 while supramolecular assemblies containing azobenzenes switch between two 

colored states resulting in limited light penetration into materials.

Recently, a new class of photochromes named Donor-Acceptor Stenhouse Adducts 

(DASAs) have been synthesized and characterized by Read de Alaniz and co-workers.14-17 As 

shown in Figure 1a, these novel chromophores consist of a donor and acceptor group linked 

together via a hydroxylated triene bridge. DASAs have shown potential as powerful photo-

switches due to large structural changes resulting in greater than 50% total volume contraction,14 

negative solvatochromism from a colored reactant to a colorless product (increasing light 

penetration and conversion yield), and tunable absorption profiles that depend directly on the 

donor and acceptor groups. To improve upon these properties, several DASA “generations” were 

synthesized where the R groups in the amine donor and the Meldrum’s acid acceptor were 
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replaced with aromatic rings16 (2nd generation) or conjugated heteroatoms17 (3rd generation), 

respectively. 

In addition to spectroscopic properties, DASAs have received considerable attention due 

to their two-part mechanism involving a fast actinic step and a slow thermal step.18-22 Using 

time-resolved UV-Vis absorption and infrared (IR) spectroscopy experiments, Feringa and 

coworkers have proposed that 1 is promoted to an excited electronic state where it relaxes back 

to the ground state via a Z/E photoisomerization nonradiative relaxation channel on the ps 

timescale.20 The timescale for Z/E photoisomerization is greatly influenced by the donor and 

acceptor groups: converting Meldrum’s acid to barbituric acid resulted in a doubling of the 

excited state lifetime.20 Furthermore, a relatively low quantum yield of 21% or less was observed 

for the EEEZ (3 in Figure 1b) photoproduct of 1st and 2nd generation DASAs in a range of 

solvents with varying polarity. Once on the ground state, DASA undergoes a thermal 4𝜋-

electrocyclization leading to the anti ring-closed cyclopentenone form (5 in Figure 1b).18,22-23 

Intermediates along the ring-closing reaction coordinate were identified in solvent via direct 

comparison between measured and calculated transient IR.20,22 In addition, an alternative thermal 

pathway was proposed with the identification of an EZZZ intermediate that leads to a syn ring-

closed cyclopentenone product (6 in Figure 1b).22 However, this syn adduct has yet to be 

observed in experiment. Lastly, the actinic step is relatively unaffected by solvent and 

concentration effects,22,24 while it is not fully understood to what degree solvent, and the 

environment as a whole, influence the thermal 4-electrocyclization. 

So far, there have been few computational studies aimed at characterizing key excited 

state features25-26 and describing the Z/E photoisomerization and 4-electrocyclization in 

DASAs.21-22,27 Using Time-Dependent Density Functional Theory (TD-DFT) and State-Average 
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Complete Active-Space Self-Consistent Field Theory (SA-CASSCF), García-Iriepa and 

coworkers identified critical points (e.g. S1/S0 minimum conical intersection (MECI) and S1 

minima) along the Z/E photoisomerization coordinate on the S1 adiabatic state.27 In addition, 

Zulfikri and coworkers explored the ground-state ring-closing mechanism by computing energy 

barriers between all involved intermediates leading to 5 and 6.22 However, several questions 

regarding the molecular response of DASAs to photoexcitation are still open.28 For example, the 

possibility of DASA to photoisomerize across alternate bonds along the triene bridge (which we 

label as , , and  as shown in Figure 1b), the influence of the donor and the acceptor group on 

timescale and quantum yield, and the role of the solvent in the switching process. A fuller 

understanding of the detailed photodynamics of DASAs will enable rational design of improved 

DASA photoswitches. 

In this letter, we use GPU-accelerated SA-CASSCF29-31 in TeraChem32-34 interfaced with 

ab-initio Multiple Spawning (AIMS)35-38 to elucidate the photodynamics of Meldrum’s acid 1st 

generation DASA in the gas-phase. Our simulations show competing nonradiative relaxation 

channels present in the actinic step, previously overlooked by MEP studies.27 The alternate 

relaxation channels arise because of the presence of several conical intersections (CI) 

corresponding to isomerization about different C-C torsional angles on the hexatriene bridge. 

Similar behavior has been observed in large conjugated polyene systems such as retinal 

protonated Schiff base.39-41 These competing pathways contribute to the low cyclization quantum 

yield observed in DASAs, which have been measured in Toluene to be 21.0%, 10.6%, and 

14.5% for 1st generation (Meldrum’s and barbituric acid) and 2nd generation DASAs, 

respectively.20 Indeed, isomerization around the   bond accesses unproductive ground-state 
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intermediates, effectively shutting off the 4-electrocyclization, while isomerization around 

  results in reforming the ring-open photoreactant 1. 

We performed ab-initio nonadiabatic molecular dynamics with AIMS using an active 

space consisting of two electrons in two  orbitals determined to minimize the 3 lowest singlet 

electronic states in conjunction with the 6-31G** basis set, hereafter referred to as SA3-

CAS(2,2)SCF/6-31G**. The chosen active space agreed well with previous large active-space 

calculations27 and was benchmarked against single-point energy calculations at the 3-state  

Extended Multistate Second Order Perturbation Theory (SA3-XMS-CAS(2,2)PT2/6-31G**) 

level of theory42-43 along the  and  photoisomerization pathways (Figures S1 and S2). In the 

Franck Condon (FC) region, the triene moiety is completely planar allowing a complete -

conjugation along its skeleton. The electronic excitation to the S1 excited state is bright and 

corresponds to a -* one-electron excitation, which is localized on the -conjugated skeleton of 

the triene backbone (see Figure S3). Upon excitation to S1, the wavepacket moves towards a 

local minimum along a bond-length alternation (BLA) coordinate where it maintains a planar 

structure. The system can then evolve along different isomerization channels corresponding to 

the  and  dihedral angles on the triene bridge (Figure 1b). The S1/S0 MECIs show a common 

feature of a 90-degree twist along one of the isomerizable bonds.

 The AIMS simulations were initiated from 50 initial conditions (positions and momenta) 

sampled from a 0K harmonic Wigner distribution corresponding to the PBE044/6-31G** ground 

state minimum. Figure S4 compares the UV absorption spectrum computed from these initial 

conditions to the experimental spectrum, and the shapes of the two spectra are in good 

agreement. The time-evolution of the wavepacket population is followed on the S0, S1, and S2 

adiabats through the first 4ps of DASA photodynamics and reported in the lower panel of Figure 
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2a. The S1 population trace was fit to a monoexponential function, , where P(t)  Aexp  t  
P(t) is the population at time t,  is the decay constant in fs, and A is a fitting parameter. The 

computed decay constant is 1.8 +/- 0.2ps, which agrees fairly well with the reported 

experimental lifetimes of 2.7ps and 2.1ps in Toluene and Dichloromethane, respectively.20 The 

shorter lifetime in the gas-phase could be due to the absence of steric and electrostatic effects 

from the solvent that may influence the isomerization dynamics. Upon photoexcitation to S1, the 

wavepacket relaxes back to S0 via two distinct S0/S1 CIs that pertain to twisting around the  or 

 dihedral angles. Partitioning each spawning event according to which of the / pathways it 

follows shows that both nonradiative relaxation channels occur on roughly the same timescale 

(upper panel of Figure 2a). Figure S5 shows that there is no obvious correlation between the 

decay channel selectivity or decay timescale and either the initial excitation energy or / pre-

twisting. 

The population transfer vs S1/S0 energy gap of all spawning geometries is plotted in the 

lower panel of Figure 2b, showing that the majority of the spawning events take place within 

0.1eV of the intersection seam, with a few reaching as far as 0.4eV. Furthermore, as shown in 

Figure S7, TBFs transfer population in a region of the intersection seam shifted towards higher 

energy with respect to the MECI. It is important to note that this shift towards higher energy is 

partly attributed to the high internal energy of the TBFs caused by the sampling of ICs from a 

harmonic Wigner distribution. Overall, these observations are consistent with previous studies 

showing that due to the high dimensionality of the CI seam and nonequilibrium nature of 

excited-state dynamics, the molecule may never reach the exact nuclear configuration 

corresponding to the MECI and cross the intersection seam at a point that possess higher internal 

energy.45-47
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In Figure 3, the S1 to S0 population transfer events are examined in more detail as a 

function of the , , and  twisting angles. The  and  decay channels are completely 

orthogonal to one another (i.e. the molecule isomerizes around either  or ). This is evident in 

Figure 3a, which shows the clear partitioning of all spawning events into either  or . 

Approximately, 78% of the wavepacket relaxes through the   pathway while only 22% passes 

through . This is in agreement with the computed barriers for the  and  twisting (Fig. S1), 

which are 0.02 and 0.05 eV, respectively. The inclusion of dynamic electron correlation is 

expected to play a small role in the general accessibility of the  and  pathways, but it may 

slightly influence their computed branching ratio. The spawning geometries along with their 

respective MECIs for  and  are shown in the inset of Figure 3a. The  spawning geometries 

are distributed around the optimized -MECI, while the  geometries are less well clustered 

around the optimized MECI. This is further examined in Figure 3b, which shows that twisting 

around  is highly coupled to twisting around the  dihedral. The spawning geometries leading to 

the  decay are only slightly twisted along  ( < 30). In contrast,  is twisted by more than 40 

during the  twisting. This concerted movement of  and  angles helps to maintain the 

intramolecular hydrogen bond between the hydroxyl and the Meldrum’s acid. Lastly, the Z/E 

photoisomerization follows a one-bond-flipping (OBF) mechanism for both  and , which is 

shown by representative  and  AIMS TBFs in the movies of the supporting information.

The intramolecular hydrogen bond plays an important role in the isomerization selectivity 

in DASA photodynamics. Figure 4 reports the population transfer as function of the 

intramolecular hydrogen bond coordinate (PT) for all spawning geometries. Negative values of 

PT represent the transfer of the proton from the hydroxyl to the carbonyl group in the Meldrum’s 
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acid. Approximately, 3% of the trajectory basis functions (TBFs) isomerizing through  

experience proton transfer. The transfer of a proton along with the increase of negative charge on 

the hydroxyl oxygen work together to decrease the strength of the  isomerizing bond via the 

BLA of the hexatriene bridge. Hence, the hydrogen bond represents a key design element to 

change the photoisomerization selectivity: changing the intramolecular hydrogen bond strength 

should tune the branching ratio between  and . 

In Figure 5, we go beyond branching between the  and  pathways and report the 

branching ratio of the AIMS trajectories that led to “reactive” and “unreactive”  and  cis 

photoproducts.  Here, reactive and unreactive pertains to those trajectories that did or did not 

form the cis photoproducts of  or , respectively.  All TBFs on S1 are colored grey, while green 

(upper panel) and red (lower panel) lines represent TBFs evolving on S0 toward the  (EEEZ) or 

 (EEZE) photoproducts from the photoreactant (EEZZ). All unreactive TBFs coming back to 

reform the photoreactant (EEZZ) on S0 are colored black. The thickness of the line is 

proportional to the renormalized population at time t of a particular TBF during the AIMS 

dynamics. Approximately, 34% of the population formed the reactive  photoproduct, while 

only 4.0% formed the reactive  photoproduct. The final branching ratio is reported as 0.34: 

0.04: 0.62 for EEEZ, EEZE and EEZZ, respectively. The small yield computed for the EEEZ 

conformer is in relatively good agreement with the experimental values of 0.21 and 0.11 

measured in Toluene and dichloromethane, respectively.20 The population transfer efficiency of 

the  channel is 44% (population reactive/ population TBFs), which is approximately two-times 

that of , showing that  is a much more efficient mode for nonradiative relaxation in DASAs. 

The low quantum yield for reactive  isomerization is related to the topology of the CI. Figure 

S6a shows the branching space at the  MECI geometry is sloped towards photoreactant, which 
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is in agreement with previous large active-space SA2-CAS(12,12)SCF calculations.27 This drives 

the wavepacket towards photoreactant, as it is energetically unfavorable to go uphill to form the 

reactive  photoproduct. A sloped intersection is also observed for the  MECI (Figure S6b). 

In conclusion, the photodynamics of the Meldrum’s acid 1st generation DASA has been 

investigated for the first-time using AIMS, revealing a complex interplay of internal coordinates 

(, ,  and PT) involved in its nonadiabatic transition from S1 to S0. Our simulations identify 

competing photoisomerization pathways (,  and  that follow OBF mechanisms to form a 

variety of ground-state structures. We show that the intramolecular hydrogen bond present in 

DASAs may play a key role in promoting the productive  photoisomerization pathway, 

effectively mitigating the coupled torsion around the  and  dihedral angles. Lastly, our 

dynamics show that the low quantum yields for the  and  photoisomerization pathways in the 

actinic step are due to the sloped nature of the / S0/S1 branching spaces. Building upon this 

study, it is clear that the influence of solvation effects on the nonadiabatic dynamics will be 

fundamental. On one hand, electrostatic and steric effects can alter the topology of the CIs, 

leading to changes in observed branching ratios and lifetimes, while on the other hand, 

intermolecular hydrogen bonding in protic solvents can influence the selectivity between the  

and  pathways. Changing the topology of the conical intersection towards a more peaked shape 

along with strengthening the intramolecular hydrogen bond represent the next steps towards 

designing new generations of DASAs with improved efficiency. Work in this direction is 

currently underway.
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Supporting Information

Comparisons of CASSCF and MSPT2 energetics for critical points and reaction 

pathways, analysis of wavefunctions in terms of active space orbitals and configuration 

interaction coefficients, plots of the potential energy surfaces around minimal energy conical 

intersections, and movies of representative TBFs. 
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a) Donor-Acceptor Stenhouse Adducts (DASA)

b) Photoisomerization Channels in 1st Generation DASAs
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Figure 1. (a) DASA generations defined by their different donor and acceptor groups. (b) DASA 
in the ring-open form (1) undergoes a Z/E photoisomerization upon irradiation with 545nm light. 
Twisting around any of the C-C bonds along the hexatriene bridge leads to a conical intersection 
where the angle is approximately 90o (See Figure S1). Isomerization though  is followed by a 
thermal 4𝜋-electrocyclization to form the anti (5) or syn (6) conformers of the ring-closed 
cyclopentenone form. The anti conformer is the only adduct that has been experimentally 
observed. 
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Theory - 1.8 +/- 0.2 ps
Exp. - 2.7ps (Toluene)

⍺
β

1.0
0.5
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0.13
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a) b)
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Figure 2. (a) (top) The spawning time vs the  (green) and  (red) dihedral angles at the 
spawning geometries from the AIMS trajectories. The spawning geometries are classified as  or 
 according to the twisting around the  and  dihedral angles ( ~ 90o for  and  ~ 90o for ). 
Since the potential energy surface is nearly symmetric with respect to the twisting direction 
(clockwise or counterclockwise), we report the absolute values of the  and  dihedral angles. 
This convention is used for all population transfer plots. The circle radius is proportional to the 
population transferred during the spawning event and separated into  and  channels. The 
population transfer is defined as the total population transferred to a child TBF from the 
beginning of coupled propagation until the child TBF becomes completely uncoupled (off-
diagonal elements in the Hamiltonian become small). (bottom) The population of the wavepacket 
on the S1 adiabat for the first 4ps of the photodynamics of Meldrum’s acid 1st generation DASA. 
Error bars were obtained from bootstrap analysis of 236 TBFs from 50 initial conditions during 
the AIMS dynamics. (b) (top) The  and  torsion angles in DASA.  (bottom) Histogram of the 
population transfer vs the energy gap of all S1/S0 spawning geometries from the entire AIMS 
simulation.
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a) b)

Figure 3. (a) The joint distribution between the  (green) and  (red) dihedral angles at the 
spawning geometries from the AIMS trajectories. Their MECI geometries (-green and -red) 
are overlaid with all spawning geometries from AIMS for comparison. (b) The joint distribution 
between   and  dihedral angles at the spawning geometries from the AIMS trajectories. 
Representative geometries are shown alongside their point. In both figures, the  and  dihedral 
angles for the MECI geometries are shown as black cones. The circle radius is proportional to 
the population transferred during the spawning event and separated into  and  channels. 
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Figure 4. The proton transfer coordinate vs the  (green) and  (red) dihedral angles at the 
spawning geometries from the AIMS trajectories. The circle radius is proportional to the 
population transferred during the spawning event and separated into  and  channels. The 
proton transfer coordinate is defined in the inset. 
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β (22%)
Reactive - 4%

S1 Min
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Unreactive - 62%

S1

S0-Reactive
S0-Unreactive

⍺

S1

S0-Reactive
S0-Unreactive

β

⍺ (78%)
Reactive - 34%

Figure 5. The time-evolution of the dihedral angles  and  through the course of the AIMS 
dynamics from all 50 initial conditions (236 TBFs). TBFs on S1 are colored grey, while green 
(upper panel) and red (lower panel) lines represent “reactive” TBFs evolving from the 
photoreactant EEZZ on S1 toward the  (EEEZ) or  (EEZE) photoproducts. All “unreactive” 
TBFs coming back to reform the photoreactant on S0 are colored black. Reactive and unreactive 
pertains to those trajectories that did or did not form the cis photoproducts of  or , 
respectively. The thickness of the line is proportional to the renormalized population at time t of 
a particular TBF during the AIMS dynamics. The branching ratio between  green and 
red is shown along with the population of “reactive” and “unreactive” trajectories leading to 
the  (EEEZ) or  (EEZE) photoproducts.
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