14 research outputs found
Recurrent Coding Sequence Variation Explains only A Small Fraction of the Genetic Architecture of Colorectal Cancer
Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 Ă— 10-7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 Ă— 10-7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 Ă— 10-
Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations
Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice
Quantitative analysis of stain variability in histology slides and an algorithm for standardization
Contains fulltext :
132653.pdf (preprint version ) (Open Access
Dititanium-Containing 19-Tungstodiarsenate(III) [Ti2(OH)2As2W19O67(H2O)]8-: Synthesis, Structure, Electrochemistry, and Oxidation Catalysis
International audienc
CYP450 polymorphisms as risk factors for early-onset lung cancer: Gender-specific differences.
Cytochrome P450 (CYP) enzymes, involved in metabolism of tobacco carcinogens, are also involved in estrogen metabolism and many are regulated by estrogens. These genes may thus be of relevance to gender-specific differences in lung cancer risk, particularly in early-onset lung cancer, where a high proportion of women is observed. We conducted a case-control study to investigate genetic polymorphisms in cytochromes that might modify the risk of developing early-onset lung cancer. In total, 638 Caucasian patients under the age of 51 with primary lung cancer and 1300 cancer-free control individuals, matched by age and sex, were included in this analysis. Thirteen polymorphisms in the CYP1A1, CYP1B1, CYP2A13, CYP3A4 and CYP3A5 genes were analyzed. No significant association was found for any of the analyzed polymorphisms and lung cancer risk overall. However, among women, a significantly increased risk of early-onset lung cancer was observed for carriers of the minor allele of CYP1B1 SNP rs1056836 [odds ratio (OR) 1.97; 95% confidence interval (CI) 1.32-2.94; P < 0.001]. Also, a non-significant increase in lung cancer risk was observed in the group of women carriers of the minor allele of CYP2A13 SNP rs1709084 (OR 1.64; 95% CI 1.00-2.70; P = 0.05). The effect of these two polymorphisms was shown to be modified by smoking. Haplotype analysis was performed for CYP1B1 and CYP2A13. No differences between cases and controls were observed for both genes (P = 0.63 and P = 0.42 for CYP1B1 and CYP2A13, respectively). Our results suggest that the CYP1B1 and the CYP2A13 genotypes may contribute to individual susceptibility to early-onset lung cancer in women