
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/132653

 

 

 

Please be advised that this information was generated on 2019-12-04 and may be subject to

change.

http://hdl.handle.net/2066/132653


Quantitative analysis of stain variability in histology slides
and an algorithm for standardization

Babak Ehteshami Bejnordia, Nadya Timofeevab, Irene Otte-Höllerb,
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ABSTRACT
This paper presents data on the sources of variation of the widely used hematoxylin and eosin (H&E) histological
staining, as well as a new algorithm to reduce these variations in digitally scanned tissue sections. Experimental
results demonstrate that staining protocols in different laboratories and staining on different days of the week are
the major factors causing color variations in histopathological images. The proposed algorithm for standardizing
histology slides is based on an initial clustering of the image into two tissue components having different absorp-
tion characteristics for different dyes. The color distribution for each tissue component is standardized by aligning
the 2D histogram of color distribution in the hue-saturation-density (HSD) model. Qualitative evaluation of the
proposed standardization algorithm shows that color constancy of the standardized images is improved. Quan-
titative evaluation demonstrates that the algorithm outperforms competing methods. In conclusion, the paper
demonstrates that staining variations, which may potentially hamper usefulness of computer assisted analysis of
histopathological images, can be reduced considerably by applying the proposed algorithm.

Keywords: Stain variability, Standardization, Hematoxylin and Eosin, Hue-saturation-density, Computer-aided
diagnosis

1. INTRODUCTION
Traditional diagnosis of cancer involves microscopic examination of histological slides acquired from tissue sam-
ples. Tissue sections are treated with multiple contrasting dyes to highlight different tissue structures and cellular
features. Pathologists make diagnostic interpretations of the histology slides by assessing the cell structures and
their spatial arrangement.1 The task is laborious and time-consuming and prone to subjectivity.2,3 Computer-
aided diagnosis (CAD) can potentially address the issue of subjective interpretations by providing an objective
quantitative assessment of digital pathology slides. CAD systems may facilitate cancer diagnosis by identifying
abnormal areas on the slide and providing second opinions for patients.4 However, variations in staining color
and intensity complicate quantitative tissue analysis.4 Such variations are due to inter-patient variation and
inconsistencies in the preparation of histology slides (e.g. staining duration, stain concentration, tissue thick-
ness). Although standardizing the staining protocols can minimize these effects, it is infeasible to remove all
sources of variation5 (e.g. tissue samples stained on different days of the week by following the same staining
protocol in the same laboratory may result in different staining hue). Different approaches to overcome this
problem have been proposed in literature, based on manipulation of the digital image after scanning of the slide.
Methods based on normalization rely on extracting stain vectors and decomposing the image into individual stain
components via color deconvolution.6 The appearance of the images is normalized by adjusting the distribution
of the color for each stain to a predefined range.7 Methods based on color standardization match the color
distribution of a histology image into a pre-defined template image by mapping its histogram-specific landmarks
to the corresponding landmarks of the template image8,9 . In9 it was shown that separate standardization of
the histogram for different tissue components yields an improved color constancy over global standardization
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approaches. However, the result of this standardization scheme relies on the accuracy of the tissue segmentation
algorithm without considering the fact that pixels generally contain mixtures of stains.

This study first investigates the contribution of several factors to the color variation of histology slides
stained with the widely used hematoxylin and eosin (H&E) staining. Next, this study presents and evaluates a
new algorithm for standardization of histology slides based on an initial clustering of the image into two tissue
components having different absorption characteristics for different dyes. Standardization of the color distribution
is performed by aligning the 2D histogram of color distribution in the previously described hue-saturation-density
(HSD) model.10

2. METHODS
2.1 Analysis of color variation in hematoxylin and eosin stained histology slides
The H&E staining is the most commonly used staining technique in histopathology. Hematoxylin stains cell nuclei
blue, and the counter-stain eosin stains cytoplasmic and non-nuclear components in different shades of pink.11

An essential first step in the development of a CAD system is robust segmentation of the objects of interest
(e.g. cell nuclei). The appearance of nuclei, however, can vary considerably among histological slides, which can
cause significant adverse effects on the results of CAD. To investigate the extent and major reasons behind color
variations in histological images, a technique was developed to quantify the distribution of color information. This
technique applies the HSD model, which was specifically designed for absorption light microscopy.10 The HSD
model transforms RGB data into two chromatic components (cx and cy; which are independent of the amount
of stain) and a density component (D; linearly related to the amount of stain). Expectation Maximization
(EM)12 algorithm was employed to estimate the parameters of a Gaussian mixture model in the cxcy plane
of the HSD transform. Each image is clustered by EM into three broad classes, representing different tissue
components: nuclei, cytoplasm/stroma, and background. The probability density function for the ith class
is represented by its mean µi and covariance matrix Σi. To understand the extent of the color variation of
the hematoxylin stained tissue class, the variations in the mean value (i.e. perceived color) and the average
eigenvalue (intra-specimen color variability) of the probability density function for the class representing the
nuclei, is quantitatively described.

2.2 Standardization of histology slides
The proposed algorithm for standardization of histology images is based on an initial clustering of the image into
three classes (nuclei, cytoplasm/stroma, background) in the cxcy plane of the HSD transform. Background pixels
(devoid of stain) show very low density values (D < 0.2). Given that the image background is white, all three
RGB values have to exceed 180 to be classified as background. By application of singular value decomposition
(SVD) on the remaining data points in the cxcy plane, the two singular vectors with largest singular values
are computed. The angle between each data point and the second singular vector (perpendicular to the first)
was calculated. All the data points having an angle below 90◦ degrees were classified as pixels absorbing the
majority of hematoxylin stain and the remaining as pixels absorbing the majority of eosin stain. Figure 1 shows
the scatter plot of the classified pixels in cxcy space.

The process for standardization of each tissue class i involves: (i) computing mean µi and covariance matrix
Σi of the data distribution for class i by modeling it as a Gaussian; (ii) centering the axis of the data points
by translating the mean of the data distribution in class i to the point (0, 0) and rotating the entire data
distribution along the major eigenvector of Σi to maximize the variance along the axes; (iii) computing landmarks
{cmin, c1, cmedian, c99, cmax} for the rotated cx and cy values independently, where c1, cmedian and c99 denote the
1st, 50th and 99th percentiles of the data points belonging to class i, and cmin and cmax denote the minimum
and maximum values of the entire distribution; (iv) interpolating the data distribution to match the predefined
corresponding landmarks from the template image {tmin, t1, tmedian, t99, tmax} by performing piecewise linear
mappings – from [cmin, c1] to [tmin, t1], [c1, cmedian] to [t1, tmedian], etc.; (v) rotating back the entire distribution
along the major eigenvector of the corresponding tissue class in the template image; (vi) translating the entire
distribution to the point (cxm, cym) where cxm and cym are the mean cx and cy values of the data distribution
for the corresponding tissue class in the template image.
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Figure 1: Scatter plot of all the pixels classified as hematoxylin and Eosin in cxcy space by application of singular
value decomposition.

A weighted sum of the transformed cxcy values for each class yields the final c′xc′y for the entire distribu-
tion. The weight function is computed by first estimating the distribution of the two classes as two Gaussian
components k ∈ {1, 2} and then calculating their corresponding posterior probabilities for each observation X

(excluding background observations) in the original cxcy plane through P (K | X) = πkN(X|µk,Σk)∑k

j=1
πjN(X|µj ,Σj)

, where πk

is the prior probability and N(X | µk,Σk) is the probability density function of component K for the observation
X. This yields the following transformation:

c′xc
′
y = cx1cy1 × P (K = 1 | cx1cy1) + cx2cy2 × P (K = 2 | cx2cy2) (1)

where cx1cy1 and cx2cy2 are the transformed cxcy values belonging to each class, and c′xc
′
y is the yielded

final transformation. After scaling the density histogram of the image to the density histogram of the template
image using 10 evenly spaced percentiles as landmarks, the RGB channels are reconstructed by the reverse HSD
transform.10

2.3 Histology images
The image data used in this study originate from a set of 45 digitized H&E stained histopathology slides of
lymph nodes from three different patients. The slides were stained in three different laboratories on different
days of the week (15 slides for each lab). All the slides were digitized using a CCD RGB camera mounted on a
light microscope with a 40× objective lens (Olympus dotSlide system, Olympus, Japan). Three representative
regions of interest (ROI) images were acquired from each slide yielding a total of 135 images. Each image is of
size 2300× 3300 pixels with square pixels of size 0.16 µm in the microscope image plane. Figure 2 shows three
sample images stained in different laboratories.

2.4 Experiments
To evaluate the major factors causing stain variations in histology images and to understand the extent of these
changes and also to evaluate the performance of the proposed color standardization algorithm two experiments
were performed.

The aim of the first experiment was to statistically measure the variations in the mean (cx, cy) values (de-
scribing absolute hematoxylin color) and the average eigenvalues (describing intra-slide hematoxylin variation)
of the probability density function for the class representing the nuclei in the cxcy plane of the HSD model. The
importance of three potential factors that contribute to staining variations including patient, staining laboratory
and staining day of the week was studied. Provided that the staining solutions used by the automated staining



Figure 2: Sample images from the three laboratories. (a), (b), and (c) are three sample ROI images stained by
laboratory 1, 2 and 3 respectively.

machines is changed once or twice per week, staining on different days of the week may result in a stain having
different spectral characteristics. Multivariate analysis of variance (MANOVA)13 with Pillai’s statistics was used
to determine the statistical significance of differences between these variables.

In the second experiment, the performance of the proposed standardization algorithm is both qualitatively
and quantitatively evaluated. Qualitative evaluation is performed by visualizing the original image and assessing
the visual color constancy of the standardized image with respect to the template image. For quantitative
evaluation of the results, the color constancy of the nuclei segmented regions were evaluated and compared
to the global standardization (GS) algorithm8 and the appearance normalization method7 by calculating the
normalized median intensity (NMI).9,14 The standard deviation of the NMI values and the coefficients of the
variations (i.e. standard deviation divided by mean) were computed for all the images in the dataset before
and after standardization using the proposed algorithm. The nuclei were segmented by imposing a threshold of
T = 120 (determined empirically) on the average of the RGB values for each image.

3. RESULTS
Experiment 1: MANOVA results show that differences between labs may be considerable, and that for certain
labs staining results differ significantly between days of the week (Table 1). Comparable results were found for
the mean (cx, cy) values and the average eigenvalues of the nuclei. No significant color variations were observed
between tissues from different patients.

Table 1: Multivariate analysis of variance with Pillai’s statistics

Variables cx, cy Average eigenvalues

Patients generally no significant effect no effect

significant differences between significant differences between
Laboratory L3 and L1/L2 (p < 0.004) L3 and L1/L2 (p < 0.004)

weak difference between L1 and L2 weak difference between L1 and L2

Days of
the week

L1 (p < 0.003) L1 (p < 0.02)
L2 not significant L2 not significant
L3 (p < 0.004) L3 (p < 0.002)

L1 : Laboratory 1, L2: Laboratory 2, L3: Laboratory 3

Figure 3 shows boxplots of the average eigenvalue distributions of the nuclei segmented regions of the slides



stained in different laboratories on different days of the week. The mean and standard deviation of the average
eigenvalues for different days of the week are considerably higher for the third laboratory.
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Figure 3: Boxplots of average eigenvalue distributions for the three laboratories for different days of the week.
The mean and standard deviation have been calculated for the five weekday distributions for each laboratory.

Experiment 2: Figure 4 shows the result of the standardization by the proposed algorithm. The original
images in Figure 2b and Figure 2c are standardized by using the image in Figure 4a as the template image.
The standard deviation (SD) of the normalized median intensity and its coefficient of variation (CV) for the
segmented nuclei are presented in Table 2 for the three laboratories. The proposed method outperforms GS
algorithm and the appearance normalization method by yielding the lowest SD and CV of normalized median
intensity.

Figure 4: Standardization of H&E stained histopathology images. (a) The template image used for extracting
the parameters of the standardization algorithm. (b) The standardized image of the image shown in Figure 2b
(c) The standardized image of the image shown in Figure 2c.



Table 2: Standard deviation and coefficient of variation of NMI for all the images in the three laboratories.

Laboratory 1 Laboratory 2 Laboratory 3

NMI SD NMI CV NMI SD NMI CV NMI SD NMI CV
Original 0.0363 0.0450 0.0260 0.0317 0.0367 0.0484

Macenko7 0.0251 0.0275 0.0207 0.0228 0.341 0.4520
Global standardization8 0.0240 0.0277 0.0203 0.0238 0.0219 0.0256

Proposed algorithm 0.0068 0.0081 0.0077 0.0093 0.0094 0.0123

4. CONCLUSIONS AND DISCUSSION
This paper investigated the effect of several factors on the color variation of hematoxylin and eosin stained
histology slides. The experimental results demonstrate that staining protocols in different laboratories and
staining on different days of the week are the major factors causing color variations in histopathology images.
This paper also presented a new algorithm for reducing stain variations in histology slides. Qualitative assessment
of the results show the efficacy of the algorithm in maintaining color constancy of the histology images. The
empirical results show that the proposed algorithm outperforms the global standardization algorithm and the
appearance normalization method (based on automatic derivation of stain vectors) by yielding a lower standard
deviation and coefficient of variation of the normalized median intensity. The algorithm presented in this paper
can be applied to other histological stains and tissues. This will be the subject of future work.
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