20 research outputs found

    Patterns of proton therapy use in pediatric cancer management in 2016: An international survey

    No full text
    Purpose: To facilitate the initiation of observational studies on late effects of proton therapy in pediatric patients, we report on current patterns of proton therapy use worldwide in patients aged less than 22 years. Materials & methods: Fifty-four proton centers treating pediatric patients in 2016 in 11 countries were invited to respond to a survey about the number of patients treated during that year by age group, intent of treatment, delivery technique and tumor types. Results: Among the 40 participating centers (participation rate: 74%), a total of 1,860 patients were treated in 2016 (North America: 1205, Europe: 432, Asia: 223). The numbers of patients per center ranged from 1 to 206 (median: 29). Twenty-four percent of the patients were <5 years of age, and 50% <10 years. More than 30 pediatric tumor types were identified, mainly treated with curative intent: 48% were CNS, 25% extra-cranial sarcomas, 7% neuroblastoma, and 5% hematopoietic tumors. About half of the patients were treated with pencil beam scanning. Treatment patterns were broadly similar across the three continents. Conclusion: To our knowledge, this survey provides the first worldwide assessment of proton therapy use for pediatric cancer management. Since previous estimates in the United States and Europe, CNS tumors remain the cancer types most commonly treated with protons in 2016. However, the proportion of extra-cranial tumors is growing worldwide. The typically low numbers of patients treated in each center indicate the need for international research collaborations to assess long-term outcomes of proton therapy in pediatric patients

    A map of human genome variation from population-scale sequencing

    No full text
    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.Molecular Epidemiolog

    A map of human genome variation from population-scale sequencing

    No full text
    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research

    References

    No full text

    The chemistry and antioxidant properties of tocopherols and tocotrienols

    No full text

    “Ellipsoid-of-Revolution to Cylinder”: Transverse Aspect

    No full text
    corecore