22 research outputs found

    Estimation of species divergence times in presence of cross-species gene flow

    Get PDF
    Cross-species introgression can have significant impacts on phylogenomic reconstruction of species divergence events. Here, we used simulations to show how the presence of even a small amount of introgression can bias divergence time estimates when gene flow is ignored in the analysis. Using advances in analytical methods under the multispecies coalescent (MSC) model, we demonstrate that by accounting for incomplete lineage sorting and introgression using large phylogenomic data sets this problem can be avoided. The multispecies-coalescent-with-introgression (MSci) model is capable of accurately estimating both divergence times and ancestral effective population sizes, even when only a single diploid individual per species is sampled. We characterize some general expectations for biases in divergence time estimation under three different scenarios: 1) introgression between sister species, 2) introgression between non-sister species, and 3) introgression from an unsampled (i.e., ghost) outgroup lineage. We also conducted simulations under the isolation-with-migration (IM) model, and found that the MSci model assuming episodic gene flow was able to accurately estimate species divergence times despite high levels of continuous gene flow. We estimated divergence times under the MSC and MSci models from two published empirical datasets with previous evidence of introgression, one of 372 target-enrichment loci from baobabs (Adansonia), and another of 1,000 transcriptome loci from fourteen species of the tomato relative, Jaltomata. The empirical analyses not only confirm our findings from simulations, demonstrating that the MSci model can reliably estimate divergence times, but also show that divergence time estimation under the MSC can be robust to the presence of small amounts of introgression in empirical datasets with extensive taxon sampling

    Gene-rich UV sex chromosomes harbor conserved regulators of sexual development

    Get PDF
    Centro de Investigación Forestal (CIFOR)Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable ele ments, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss Ceratodon purpureus to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.This work was supported by NSF DEB-1541005 and 1542609 and start-up funds from UF to S.F.M.; microMORPH Cross-Disciplinary Training Grant, Sigma-Xi Grant-In-Aid of Research, and Society for the Study of Evolution Rosemary Grant Award to S.B.C.; NSF DEB-1239992 to N.J.W.; the Emil Aaltonen Foundation and the University of Turku to S.O.; and NSF DEB-1541506 to J.G.B. and S.F.M. The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.Peer reviewed12 Pág. Supplementary material for this article is available at http://advances.sciencemag.org/cgi/ content/full/7/27/eabh2488/DC

    Phylogenomic analyses provide insights into primate evolution

    Get PDF
    Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution

    Reply to Nakatani and McLysaght: Analyzing deep duplication events

    No full text

    Whole genome phylogeny of Gallus: introgression and data-type effects

    No full text
    Abstract Background Previous phylogenetic studies that include the four recognized species of Gallus have resulted in a number of distinct topologies, with little agreement. Several factors could lead to the failure to converge on a consistent topology, including introgression, incomplete lineage sorting, different data types, or insufficient data. Methods We generated three novel whole genome assemblies for Gallus species, which we combined with data from the published genomes of Gallus gallus and Bambusicola thoracicus (a member of the sister genus to Gallus). To determine why previous studies have failed to converge on a single topology, we extracted large numbers of orthologous exons, introns, ultra-conserved elements, and conserved non-exonic elements from the genome assemblies. This provided more than 32 million base pairs of data that we used for concatenated maximum likelihood and multispecies coalescent analyses of Gallus. Results All of our analyses, regardless of data type, yielded a single, well-supported topology. We found some evidence for ancient introgression involving specific Gallus lineages as well as modest data type effects that had an impact on support and branch length estimates in specific analyses. However, the estimated gene tree spectra for all data types had a relatively good fit to their expectation given the multispecies coalescent. Conclusions Overall, our data suggest that conflicts among previous studies probably reflect the use of smaller datasets (both in terms of number of sites and of loci) in those analyses. Our results demonstrate the importance of sampling large numbers of loci, each of which has a sufficient number of sites to provide robust estimates of gene trees. Low-coverage whole genome sequencing, as we did here, represents a cost-effective means to generate the very large data sets that include multiple data types that enabled us to obtain a robust estimate of Gallus phylogeny

    Estimation of species divergence times in presence of cross-species gene flow.

    No full text
    Cross-species introgression can have significant impacts on phylogenomic reconstruction of species divergence events. Here, we used simulations to show how the presence of even a small amount of introgression can bias divergence time estimates when gene flow is ignored in the analysis. Using advances in analytical methods under the multispecies coalescent (MSC) model, we demonstrate that by accounting for incomplete lineage sorting and introgression using large phylogenomic data sets this problem can be avoided. The multispecies-coalescent-with-introgression (MSci) model is capable of accurately estimating both divergence times and ancestral effective population sizes, even when only a single diploid individual per species is sampled. We characterize some general expectations for biases in divergence time estimation under three different scenarios: 1) introgression between sister species, 2) introgression between non-sister species, and 3) introgression from an unsampled (i.e., ghost) outgroup lineage. We also conducted simulations under the isolation-with-migration (IM) model, and found that the MSci model assuming episodic gene flow was able to accurately estimate species divergence times despite high levels of continuous gene flow. We estimated divergence times under the MSC and MSci models from two published empirical datasets with previous evidence of introgression, one of 372 target-enrichment loci from baobabs (Adansonia), and another of 1,000 transcriptome loci from fourteen species of the tomato relative, Jaltomata. The empirical analyses not only confirm our findings from simulations, demonstrating that the MSci model can reliably estimate divergence times, but also show that divergence time estimation under the MSC can be robust to the presence of small amounts of introgression in empirical datasets with extensive taxon sampling
    corecore