22 research outputs found

    Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment

    Get PDF
    Lightweight deployable space webs have been proposed as platforms or frames for a construction of structures in space where centrifugal forces enable deployment and stabilization. The Suaineadh project was aimed to deploy a 2Ă—2m2 space web by centrifugal forces in milli-gravity conditions and act as a test bed for the space web technology. Data from former sounding rocket experiments, ground tests and simulations were used to design the structure, the folding pattern and control parameters. A developed control law and a reaction wheel were used to control the deployment. After ejection from the rocket, the web was deployed but entanglements occurred since the web did not start to deploy at the specified angular velocity. The deployment dynamics was reconstructed from the information recorded in inertial measurement units and cameras. The nonlinear torque of the motor used to drive the reaction wheel was calculated from the results. Simulations show that if the Suaineadh started to deploy at the specified angular velocity, the web would most likely have been deployed and stabilized in space by the motor, reaction wheel and controller used in the experiment

    Results of REXUS12's Suaineadh Experiment : Deployment of a spinning space web in micro gravity conditions

    Get PDF
    On the 19th of March 2012, the Suaineadh experiment was launched onboard the sounding rocket REXUS12 (Rocket Experiments for University Students) from the Swedish launch base ESRANGE in Kiruna. The Suaineadh experiment served as a technology demonstrator for a space web deployed by a spinning assembly. The deployment of this web is a stepping stone for the development of ever larger structures in space. Such a structure could serve as a substructure for solar arrays, transmitters and/or antennas. The team was comprised of students from the University of Strathclyde (Glasgow, UK), the University of Glasgow (Glasgow, UK) and the Royal Institute of Technology (Stockholm, Sweden), designing, manufacturing and testing the experiment over the past 24 months. Following launch, the experiment was ejected from the ejection barrel located within the nosecone of the rocket. Centrifugal forces acting upon the space webs spinning assembly were used to stabilise the experiment’s platform. A specifically designed spinning reaction wheel, with an active control method, was used. Once the experiment’s motion was controlled, a 2 m by 2 m space web is released. Four daughter sections situated in the corners of the square web served as masses to stabilise the web due to the centrifugal forces acting on them. The four daughter sections contained inertial measurement units (IMUs). Each IMU provided acceleration and velocity measurements in all three directions. Through this, the positions of the four corners could be found through integration with respect to known time of the accelerations and rotations. Furthermore, four cameras mounted on the central hub section captured high resolution imagery of the deployment process. After the launch of REXUS12, the recovery helicopter was unable to locate the ejected experiment, but 22 pictures were received over the wireless connection between the experiment and the rocket. The last received picture was taken at the commencement of web deployment. Inspection of these pictures allowed the assumption that the experiment was fully functional after ejection, but perhaps through tumbling of either the experiment or the rocket, the wireless connection was interrupted. A recovery mission in the middle of August was only able to find the REXUS12 motor and the payload impact location

    More Bucks for the Bang: New Space Solutions, Impact Tourism and one Unique Science & Engineering Opportunity at T-6 Months and Counting

    Get PDF
    For now, the Planetary Defense Conference Exercise 2021's incoming fictitious(!) asteroid, 2021 PDC, seems headed for impact on October 20th, 2021, exactly 6 months after its discovery. Today (April 26th, 2021), the impact probability is 5%, in a steep rise from 1 in 2500 upon discovery six days ago. We all know how these things end. Or do we? Unless somebody kicked off another headline-grabbing media scare or wants to keep civil defense very idle very soon, chances are that it will hit (note: this is an exercise!). Taking stock, it is barely 6 months to impact, a steadily rising likelihood that it will actually happen, and a huge uncertainty of possible impact energies: First estimates range from 1.2 MtTNT to 13 GtTNT, and this is not even the worst-worst case: a 700 m diameter massive NiFe asteroid (covered by a thin veneer of Ryugu-black rubble to match size and brightness) would come in at 70 GtTNT. In down to Earth terms, this could be all between smashing fireworks over some remote area of the globe and a 7.5 km crater downtown somewhere. Considering the deliberate and sedate ways of development of interplanetary missions it seems we can only stand and stare until we know well enough where to tell people to pack up all that can be moved at all and save themselves. But then, it could just as well be a smaller bright rock. The best estimate is 120 m diameter from optical observation alone, by 13% standard albedo. NASA's upcoming DART mission to binary asteroid (65803) Didymos is designed to hit such a small target, its moonlet Dimorphos. The Deep Impact mission's impactor in 2005 successfully guided itself to the brightest spot on comet 9P/Tempel 1, a relatively small feature on the 6 km nucleus. And 'space' has changed: By the end of this decade, one satellite communication network plans to have launched over 11000 satellites at a pace of 60 per launch every other week. This level of series production is comparable in numbers to the most prolific commercial airliners. Launch vehicle production has not simply increased correspondingly - they can be reused, although in a trade for performance. Optical and radio astronomy as well as planetary radar have made great strides in the past decade, and so has the design and production capability for everyday 'high-tech' products. 60 years ago, spaceflight was invented from scratch within two years, and there are recent examples of fastpaced space projects as well as a drive towards 'responsive space'. It seems it is not quite yet time to abandon all hope. We present what could be done and what is too close to call once thinking is shoved out of the box by a clear and present danger, to show where a little more preparedness or routine would come in handy - or become decisive. And if we fail, let's stand and stare safely and well instrumented anywhere on Earth together in the greatest adventure of science

    Deployable Tensegrity Structures for Space Applications

    No full text
    QC 2010090

    Lessons learned from REXUS12'S Suaineadh Experiment : Spinning deployment of a space web in milli gravity

    Get PDF
    On the 19th of March 2012, the Suaineadh experiment was launched onboard the sounding rocket REXUS 12 (Rocket Experiments for University Students) from the Swedish launch base ESRANGE in Kiruna. The Suaineadh experiment served as a technology demonstrator for a space web deployed by a spinning assembly. Following launch, the experiment was ejected from the ejection barrel located within the nosecone of the rocket. Centrifugal forces acting upon the space web spinning assembly were used to stabilise the experiment’s platform. A specifically designed spinning reaction wheel, with an active control method, was used. Once the experiment’s motion was controlled, a 2 m by 2 m space web is released. Four daughter sections situated in the corners of the square web served as masses to stabilise the web due to the centrifugal forces acting on them. The four daughter sections contained inertial measurement units (IMUs). After the launch of REXUS12, the recovery helicopter was unable to locate the ejected experiment, but 22 pictures were received over the wireless connection between the experiment and the rocket. The last received picture was taken at the commencement of web deployment. Inspection of these pictures allowed the assumption that the experiment was fully functional after ejection, but probably through tumbling of either the experiment or the rocket, the wireless connection was interrupted. A recovery mission in the middle of August was only able to find the REXUS12 motor and the payload impact location

    A classical lamination model of bi-stable woven composite tape-springs

    No full text
    This extended abstract presents the work done so far on modeling woven composite materials, specifically two carbon fiber reinforced plastics materials: twill and plain weave. The material model has been initially verified against data available in a database.QC 2012021

    Tactic : A New Detector for Nuclear Astrophysics

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Design and Development of Damping SandwichPanels for Satellite Housing Using AdditiveManufacturing

    No full text
    The present work investigates the performance of additively-manufactured sandwich structures with the goal of reducing the effect of vibrations on a spacecraft during launch, whilst minimizing mass. Additive manufacturing allows designers to implement custom and complex geometries, such as the sheet gyroid structures, inside sandwich panels. Accordingly, this work details the development of gyroid-based sandwich structures for damping. Several test specimens are designed, additively manufactured using ABS plastic, and their damping performances are evaluated based on both simulation and experiments. Damping values are identified using frequency response transfer functions. The results show that as theory predicts, adding more mass, through the added thickness of the gyroid reduces the amplitude of vibrations. However, on a damping-per-unit-mass basis, the experimental results are inconclusive mainly due to the measurements of vibrations in the center of the sandwich panels instead of the sides where the vibrations can be maximum. Therefore, simulations better illustrate the changes of the damping behavior at different applied frequencies. Lessons and experiences are summarized for future work, particularly in exploring the effects of varying other 3D printed composite meta-lattice sandwich structures for satellites. QC 20230220</p
    corecore