10 research outputs found

    KEYNOTE ADDRESS: Climate Change: From Global to New York Scale

    Get PDF
    This talk is concerned with the science and impacts of climate change from global to New York scales. It will provide an assessment of how the climate has changed over the past Century based on a purely observational perspective. The scientific basis for anthroprogenic climate change will be explained and discussed including a description of the “greenhouse effect” and why it is important for life on this planet. We will briefly discuss global and local consequences of a warmer climate and what we need to be prepared for going forward in the coming decades

    Quantitative Content Analysis Data for Hand Labeling Road Surface Conditions in New York State Department of Transportation Camera Images

    No full text
    Traffic camera images from the New York State Department of Transportation (511ny.org) are used to create a hand-labeled dataset of images classified into to one of six road surface conditions: 1) severe snow, 2) snow, 3) wet, 4) dry, 5) poor visibility, or 6) obstructed. Six labelers (authors Sutter, Wirz, Przybylo, Cains, Radford, and Evans) went through a series of four labeling trials where reliability across all six labelers were assessed using the Krippendorff’s alpha (KA) metric (Krippendorff, 2007). The online tool by Dr. Freelon (Freelon, 2013; Freelon, 2010) was used to calculate reliability metrics after each trial, and the group achieved inter-coder reliability with KA of 0.888 on the 4th trial. This process is known as quantitative content analysis, and three pieces of data used in this process are shared, including: 1) a PDF of the codebook which serves as a set of rules for labeling images, 2) images from each of the four labeling trials, including the use of New York State Mesonet weather observation data (Brotzge et al., 2020), and 3) an Excel spreadsheet including the calculated inter-coder reliability metrics and other summaries used to asses reliability after each trial. The broader purpose of this work is that the six human labelers, after achieving inter-coder reliability, can then label large sets of images independently, each contributing to the creation of larger labeled dataset used for training supervised machine learning models to predict road surface conditions from camera images. The xCITE lab (xCITE, 2023) is used to store camera images from 511ny.org, and the lab provides computing resources for training machine learning models
    corecore