630 research outputs found

    An explicit harmonic code for black-hole evolution using excision

    Get PDF
    We describe an explicit in time, finite-difference code designed to simulate black holes by using the excision method. The code is based upon the harmonic formulation of the Einstein equations and incorporates several features regarding the well-posedness and numerical stability of the initial-boundary problem for the quasilinear wave equation. After a discussion of the equations solved and of the techniques employed, we present a series of testbeds carried out to validate the code. Such tests range from the evolution of isolated black holes to the head-on collision of two black holes and then to a binary black hole inspiral and merger. Besides assessing the accuracy of the code, the inspiral and merger test has revealed that individual apparent horizons can touch and even intersect. This novel feature in the dynamics of the marginally trapped surfaces is unexpected but consistent with theorems on the properties of apparent horizons

    Excitation of Kerr quasinormal modes in extreme-mass-ratio inspirals

    No full text
    If a small compact object orbits a black hole, it is known that it can excite the black hole's quasinormal modes (QNMs), leading to high-frequency oscillations (``wiggles'') in the radiated field at J+\mathcal{J}^+, and in the radiation-reaction self-force acting on the object after its orbit passes through periapsis. Here we survey the phenomenology of these wiggles across a range of black hole spins and equatorial orbits. In both the scalar-field and gravitational cases we find that wiggles are a generic feature across a wide range of parameter space, and that they are observable in field perturbations at fixed spatial positions, in the self-force, and in radiated fields at J+\mathcal{J}^+. For a given charge or mass of the small body, the QNM excitations have the highest amplitudes for systems with a highly spinning central black hole, a prograde orbit with high eccentricity, and an orbital periapsis close to the light ring. The QNM amplitudes depend smoothly on the orbital parameters, with only very small amplitude changes when the orbit's (discrete) frequency spectrum is tuned to match QNM frequencies. The association of wiggles with QNM excitations suggest that they represent a situation where the \emph{nonlocal} nature of the self-force is particularly apparent, with the wiggles arising as result of QNM excitation by the compact object near periapsis, and then encountered later in the orbit. Astrophysically, the effects of wiggles at J+\mathcal{J}^+ might allow direct observation of Kerr QNMs in extreme-mass-ratio inspiral (EMRI) binary black hole systems, potentially enabling new tests of general relativity

    An explicit harmonic code for black-hole evolution using excision

    Get PDF
    We describe an explicit in time, finite-difference code designed to simulate black holes by using the excision method. The code is based upon the harmonic formulation of the Einstein equations and incorporates several features regarding the well-posedness and numerical stability of the initial-boundary problem for the quasilinear wave equation. After a discussion of the equations solved and of the techniques employed, we present a series of testbeds carried out to validate the code. Such tests range from the evolution of isolated black holes to the head-on collision of two black holes and then to a binary black hole inspiral and merger. Besides assessing the accuracy of the code, the inspiral and merger test has revealed that individual apparent horizons can touch and even intersect. This novel feature in the dynamics of the marginally trapped surfaces is unexpected but consistent with theorems on the properties of apparent horizons

    Slice Stretching Effects for Maximal Slicing of a Schwarzschild Black Hole

    Full text link
    Slice stretching effects such as slice sucking and slice wrapping arise when foliating the extended Schwarzschild spacetime with maximal slices. For arbitrary spatial coordinates these effects can be quantified in the context of boundary conditions where the lapse arises as a linear combination of odd and even lapse. Favorable boundary conditions are then derived which make the overall slice stretching occur late in numerical simulations. Allowing the lapse to become negative, this requirement leads to lapse functions which approach at late times the odd lapse corresponding to the static Schwarzschild metric. Demanding in addition that a numerically favorable lapse remains non-negative, as result the average of odd and even lapse is obtained. At late times the lapse with zero gradient at the puncture arising for the puncture evolution is precisely of this form. Finally, analytic arguments are given on how slice stretching effects can be avoided. Here the excision technique and the working mechanism of the shift function are studied in detail.Comment: 16 pages, 4 figures, revised version including a study on how slice stretching can be avoided by using excision and/or shift

    An introduction to local Black Hole horizons in the 3+1 approach to General Relativity

    Full text link
    We present an introduction to dynamical trapping horizons as quasi-local models for black hole horizons, from the perspective of an Initial Value Problem approach to the construction of generic black hole spacetimes. We focus on the geometric and structural properties of these horizons aiming, as a main application, at the numerical evolution and analysis of black hole spacetimes in astrophysical scenarios. In this setting, we discuss their dual role as an "a priori" ingredient in certain formulations of Einstein equations and as an "a posteriori" tool for the diagnosis of dynamical black hole spacetimes. Complementary to the first-principles discussion of quasi-local horizon physics, we place an emphasis on the "rigidity" properties of these hypersurfaces and their role as privileged geometric probes into near-horizon strong-field spacetime dynamics.Comment: 37 pages, 5 figures. Notes prepared for the course at the 2011 Shanghai Asia-Pacific School and Workshop on Gravitation (Shanghai Normal University, February 10-14, 2011

    1H, 15N, and 13C chemical shift assignments of mouse HOXA13 DNA binding domain

    Get PDF
    The homeobox gene (HOXA13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of many important proteins during embryonic morphogenesis. We report complete NMR chemical shift assignments of the mouse HOXA13 DNA binding domain (A13DBD; BMRB no. 16252)

    Green's Matrix for a Second Order Self-Adjoint Matrix Differential Operator

    Get PDF
    A systematic construction of the Green's matrix for a second order, self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.Comment: 19 page

    Are moving punctures equivalent to moving black holes?

    Get PDF
    When simulating the inspiral and coalescence of a binary black-hole system, special care needs to be taken in handling the singularities. Two main techniques are used in numerical-relativity simulations: A first and more traditional one ``excises'' a spatial neighbourhood of the singularity from the numerical grid on each spacelike hypersurface. A second and more recent one, instead, begins with a ``puncture'' solution and then evolves the full 3-metric, including the singular point. In the continuum limit, excision is justified by the light-cone structure of the Einstein equations and, in practice, can give accurate numerical solutions when suitable discretizations are used. However, because the field variables are non-differentiable at the puncture, there is no proof that the moving-punctures technique is correct, particularly in the discrete case. To investigate this question we use both techniques to evolve a binary system of equal-mass non-spinning black holes. We compare the evolution of two curvature 4-scalars with proper time along the invariantly-defined worldline midway between the two black holes, using Richardson extrapolation to reduce the influence of finite-difference truncation errors. We find that the excision and moving-punctures evolutions produce the same invariants along that worldline, and thus the same spacetimes throughout that worldline's causal past. This provides convincing evidence that moving-punctures are indeed equivalent to moving black holes.Comment: 4 pages, 3 eps color figures; v2 = major revisions to introduction & conclusions based on referee comments, but no change in analysis or result

    Thermal Conductivities of Unidirectional Materials

    Full text link
    In this paper the composite thermal conductivities of unidirec tional composites are studied and expressions are obtained for pre dicting these conductivities in the directions along and normal to the filaments. In the direction along the filament an expression is presented based on the assumption that the filaments and matrix are connected in parallel. In the direction normal to the filaments composite thermal conductivity values are obtained first by utiliz ing the analogy between the response of a unidirectional composite to longitudinal shear loading and to transverse heat transfer; second by replacing the filament-matrix composite with an idealized ther mal model. The results of the shear loading analogy agree reason ably well with the results of the thermal model particularly at filament contents below about 60%. These results were also com pared to experimental data reported in the literature and good agreement was found between the data and those theoretical re sults that were derived for circular filaments arranged in a square packing array.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67863/2/10.1177_002199836700100206.pd
    • 

    corecore